Menu Close

S-x-2x-2-nx-n-




Question Number 153847 by mathdanisur last updated on 11/Sep/21
S = x + 2x^2  + ... + nx^n
S=x+2x2++nxn
Answered by liberty last updated on 11/Sep/21
 S=x+2x^2 +3x^3 +4x^4 +…+nx^n   xS=    x^2 +2x^3 +3x^4 +…+(n−1)x^n +nx^(n+1)   (1−x)S=x+x^2 +x^3 +x^4 +…+x^n −nx^(n+1)   (1−x)S=((x(1−x^n ))/(1−x))−nx^(n+1)   S=((x(1−x^n ))/((1−x)^2 ))−((nx^(n+1) )/((1−x)))
S=x+2x2+3x3+4x4++nxnxS=x2+2x3+3x4++(n1)xn+nxn+1(1x)S=x+x2+x3+x4++xnnxn+1(1x)S=x(1xn)1xnxn+1S=x(1xn)(1x)2nxn+1(1x)
Commented by mathdanisur last updated on 11/Sep/21
thanks ser nice
thankssernice
Commented by peter frank last updated on 11/Sep/21
thanks
thanks
Answered by mr W last updated on 11/Sep/21
Method 1:  x+x^2 +...+x^n =((x^n −1)/(x−1))  1+2x+...+nx^(n−1) =((nx^(n−1) )/(x−1))−((x^n −1)/((x−1)^2 ))  x+2x^2 +...+nx^n =((nx^n )/(x−1))−(((x^n −1)x)/((x−1)^2 ))    Method 2:  S=x+2x^2 +3x^3 +...+nx^n   xS=       x^2 +2x^3 +...+(n−1)x^n +nx^(n+1)   (1−x)S=x+x^2 +x^3 +...x^n −nx^(n+1)   (1−x)S=(((x^n −1)x)/(x−1))−nx^(n+1)   ⇒S=((nx^(n+1) )/(x−1))−(((x^n −1)x)/((x−1)^2 ))
Method1:x+x2++xn=xn1x11+2x++nxn1=nxn1x1xn1(x1)2x+2x2++nxn=nxnx1(xn1)x(x1)2Method2:S=x+2x2+3x3++nxnxS=x2+2x3++(n1)xn+nxn+1(1x)S=x+x2+x3+xnnxn+1(1x)S=(xn1)xx1nxn+1S=nxn+1x1(xn1)x(x1)2
Commented by mathdanisur last updated on 11/Sep/21
Very nice thanks ser
Verynicethanksser

Leave a Reply

Your email address will not be published. Required fields are marked *