Menu Close

S-x-is-the-sum-of-49-terms-of-AP-The-first-term-is-1-2-x-3-and-the-difference-is-7-x-If-S-x-maximum-the-value-of-10-th-term-is-




Question Number 13075 by Joel577 last updated on 13/May/17
S(x) is the sum of 49 terms of AP  The first term is (1/2)x^3  and the difference  is (7 − x)  If S(x) maximum, the value of 10^(th)  term is ...
$${S}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{49}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{AP} \\ $$$$\mathrm{The}\:\mathrm{first}\:\mathrm{term}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \:\mathrm{and}\:\mathrm{the}\:\mathrm{difference} \\ $$$$\mathrm{is}\:\left(\mathrm{7}\:−\:{x}\right) \\ $$$$\mathrm{If}\:{S}\left({x}\right)\:\mathrm{maximum},\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{10}^{\mathrm{th}} \:\mathrm{term}\:\mathrm{is}\:… \\ $$
Commented by ajfour last updated on 13/May/17
local maximum ?  x=−4   then,   T_(10) =(((−4)^3 )/2)+9[7−(−4)]                   = −32+99 =67 .
$${local}\:{maximum}\:?\:\:{x}=−\mathrm{4}\:\:\:{then}, \\ $$$$\:{T}_{\mathrm{10}} =\frac{\left(−\mathrm{4}\right)^{\mathrm{3}} }{\mathrm{2}}+\mathrm{9}\left[\mathrm{7}−\left(−\mathrm{4}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:−\mathrm{32}+\mathrm{99}\:=\mathrm{67}\:. \\ $$
Commented by Joel577 last updated on 13/May/17
How did u get x = −4 ?
$$\mathrm{How}\:\mathrm{did}\:\mathrm{u}\:\mathrm{get}\:{x}\:=\:−\mathrm{4}\:? \\ $$
Commented by ajfour last updated on 13/May/17
S(x)=((49)/2){2((x^3 /2))+48(7−x)}  (dS/dx)=((49)/2){3x^2 −48}=0  ⇒ x^2 =16       x=±4 .
$${S}\left({x}\right)=\frac{\mathrm{49}}{\mathrm{2}}\left\{\mathrm{2}\left(\frac{{x}^{\mathrm{3}} }{\mathrm{2}}\right)+\mathrm{48}\left(\mathrm{7}−{x}\right)\right\} \\ $$$$\frac{{dS}}{{dx}}=\frac{\mathrm{49}}{\mathrm{2}}\left\{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{48}\right\}=\mathrm{0} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} =\mathrm{16} \\ $$$$\:\:\:\:\:{x}=\pm\mathrm{4}\:. \\ $$
Commented by ajfour last updated on 13/May/17
Commented by Joel577 last updated on 13/May/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *