Menu Close

S-x-n-1-2n-2n-1-x-2n-x-lt-1-




Question Number 144924 by qaz last updated on 30/Jun/21
S(x)=Σ_(n=1) ^∞ (((2n)!!)/((2n+1)!!))x^(2n) =?........(∣x∣<1)
S(x)=n=1(2n)!!(2n+1)!!x2n=?..(x∣<1)
Answered by Ar Brandon last updated on 30/Jun/21
(2n+1)!!=(((2n+1)!)/((2n)!!))  S(x)=Σ_(n=1) ^∞ ((((2n)!!)^2 )/((2n+1)!))x^(2n) =Σ_(n=1) ^∞ ((2^(2n) (n!)^2 )/((2n+1)!))x^(2n)            =Σ_(n=1) ^∞ (2x)^(2n) β(n+1,n+1)=∫_0 ^1 Σ_(n=1) ^∞ (2x)^(2n) t^n (1−t)^n dt           =∫_0 ^1 Σ_(n=1) ^∞ (4x^2 t−4x^2 t^2 )^n dt=∫_0 ^1 (dt/(4x^2 t^2 −4x^2 t+1))−1           =(1/(4x^2 ))∫_0 ^1 (dt/((t−(1/2))^2 +((1−x^2 )/(4x^2 ))))−1=(1/(4x^2 ))∙((2∣x∣)/( (√(1−x^2 ))))[tan^(−1) (((2∣x∣t−∣x∣)/( (√(1−x^2 )))))]_0 ^1 −1            =((∣x∣)/(x^2 (√(1−x^2 ))))tan^(−1) (((∣x∣)/( (√(1−x^2 )))))−1
(2n+1)!!=(2n+1)!(2n)!!S(x)=n=1((2n)!!)2(2n+1)!x2n=n=122n(n!)2(2n+1)!x2n=n=1(2x)2nβ(n+1,n+1)=01n=1(2x)2ntn(1t)ndt=01n=1(4x2t4x2t2)ndt=01dt4x2t24x2t+11=14x201dt(t12)2+1x24x21=14x22x1x2[tan1(2xtx1x2)]011=xx21x2tan1(x1x2)1
Commented by qaz last updated on 30/Jun/21
i found it′s complicate to use DE to solve it....  thank you sir
ifounditscomplicatetouseDEtosolveit.thankyousir
Commented by Ar Brandon last updated on 30/Jun/21
Je vous en prie !

Leave a Reply

Your email address will not be published. Required fields are marked *