Menu Close

S-x-n-1-2n-2n-1-x-2n-x-lt-1-




Question Number 144924 by qaz last updated on 30/Jun/21
S(x)=Σ_(n=1) ^∞ (((2n)!!)/((2n+1)!!))x^(2n) =?........(∣x∣<1)
$$\mathrm{S}\left(\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2n}\right)!!}{\left(\mathrm{2n}+\mathrm{1}\right)!!}\mathrm{x}^{\mathrm{2n}} =?……..\left(\mid\mathrm{x}\mid<\mathrm{1}\right) \\ $$
Answered by Ar Brandon last updated on 30/Jun/21
(2n+1)!!=(((2n+1)!)/((2n)!!))  S(x)=Σ_(n=1) ^∞ ((((2n)!!)^2 )/((2n+1)!))x^(2n) =Σ_(n=1) ^∞ ((2^(2n) (n!)^2 )/((2n+1)!))x^(2n)            =Σ_(n=1) ^∞ (2x)^(2n) β(n+1,n+1)=∫_0 ^1 Σ_(n=1) ^∞ (2x)^(2n) t^n (1−t)^n dt           =∫_0 ^1 Σ_(n=1) ^∞ (4x^2 t−4x^2 t^2 )^n dt=∫_0 ^1 (dt/(4x^2 t^2 −4x^2 t+1))−1           =(1/(4x^2 ))∫_0 ^1 (dt/((t−(1/2))^2 +((1−x^2 )/(4x^2 ))))−1=(1/(4x^2 ))∙((2∣x∣)/( (√(1−x^2 ))))[tan^(−1) (((2∣x∣t−∣x∣)/( (√(1−x^2 )))))]_0 ^1 −1            =((∣x∣)/(x^2 (√(1−x^2 ))))tan^(−1) (((∣x∣)/( (√(1−x^2 )))))−1
$$\left(\mathrm{2n}+\mathrm{1}\right)!!=\frac{\left(\mathrm{2n}+\mathrm{1}\right)!}{\left(\mathrm{2n}\right)!!} \\ $$$$\mathrm{S}\left(\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\left(\mathrm{2n}\right)!!\right)^{\mathrm{2}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{x}^{\mathrm{2n}} =\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{\mathrm{2n}} \left(\mathrm{n}!\right)^{\mathrm{2}} }{\left(\mathrm{2n}+\mathrm{1}\right)!}\mathrm{x}^{\mathrm{2n}} \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{2x}\right)^{\mathrm{2n}} \beta\left(\mathrm{n}+\mathrm{1},\mathrm{n}+\mathrm{1}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{2x}\right)^{\mathrm{2n}} \mathrm{t}^{\mathrm{n}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{n}} \mathrm{dt} \\ $$$$\:\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\mathrm{4x}^{\mathrm{2}} \mathrm{t}−\mathrm{4x}^{\mathrm{2}} \mathrm{t}^{\mathrm{2}} \right)^{\mathrm{n}} \mathrm{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\mathrm{4x}^{\mathrm{2}} \mathrm{t}^{\mathrm{2}} −\mathrm{4x}^{\mathrm{2}} \mathrm{t}+\mathrm{1}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4x}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dt}}{\left(\mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }{\mathrm{4x}^{\mathrm{2}} }}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{4x}^{\mathrm{2}} }\centerdot\frac{\mathrm{2}\mid\mathrm{x}\mid}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\left[\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}\mid\mathrm{x}\mid\mathrm{t}−\mid\mathrm{x}\mid}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mid\mathrm{x}\mid}{\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mid\mathrm{x}\mid}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }}\right)−\mathrm{1} \\ $$
Commented by qaz last updated on 30/Jun/21
i found it′s complicate to use DE to solve it....  thank you sir
$$\mathrm{i}\:\mathrm{found}\:\mathrm{it}'\mathrm{s}\:\mathrm{complicate}\:\mathrm{to}\:\mathrm{use}\:\mathrm{DE}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}…. \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by Ar Brandon last updated on 30/Jun/21
Je vous en prie !

Leave a Reply

Your email address will not be published. Required fields are marked *