S-x-n-1-2n-2n-1-x-2n-x-lt-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 144924 by qaz last updated on 30/Jun/21 S(x)=∑∞n=1(2n)!!(2n+1)!!x2n=?……..(∣x∣<1) Answered by Ar Brandon last updated on 30/Jun/21 (2n+1)!!=(2n+1)!(2n)!!S(x)=∑∞n=1((2n)!!)2(2n+1)!x2n=∑∞n=122n(n!)2(2n+1)!x2n=∑∞n=1(2x)2nβ(n+1,n+1)=∫01∑∞n=1(2x)2ntn(1−t)ndt=∫01∑∞n=1(4x2t−4x2t2)ndt=∫01dt4x2t2−4x2t+1−1=14x2∫01dt(t−12)2+1−x24x2−1=14x2⋅2∣x∣1−x2[tan−1(2∣x∣t−∣x∣1−x2)]01−1=∣x∣x21−x2tan−1(∣x∣1−x2)−1 Commented by qaz last updated on 30/Jun/21 ifoundit′scomplicatetouseDEtosolveit….thankyousir Commented by Ar Brandon last updated on 30/Jun/21 Je vous en prie ! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-below-is-a-graph-between-speed-and-time-for-a-particle-Is-the-particle-undergoing-positive-displacement-or-negative-displacement-Next Next post: n-1-2n-2-n-n-1-2n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.