Menu Close

s-x-n-N-oo-n-2-n-1-2-n-x-n-




Question Number 182347 by SANOGO last updated on 08/Dec/22
s(x)=Σ_(nεN) ^(+oo  )  ((n^2 (n+1)^2 )/(n!))x^n =?
$${s}\left({x}\right)=\underset{{n}\epsilon{N}} {\overset{+{oo}\:\:} {\sum}}\:\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{{n}!}{x}^{{n}} =? \\ $$
Answered by mr W last updated on 08/Dec/22
e^x −1=Σ_(n=1) ^∞ (x^n /(n!))  e^x =Σ_(n=1) ^∞ ((nx^(n−1) )/(n!))  xe^x =Σ_(n=1) ^∞ ((nx^n )/(n!))  (x+1)e^x =Σ_(n=1) ^∞ ((n^2 x^(n−1) )/(n!))  (x^3 +x^2 )e^x =Σ_(n=1) ^∞ ((n^2 x^(n+1) )/(n!))  (x^3 +4x^2 +2x)e^3 =Σ_(n=1) ^∞ ((n^2 (n+1)x^n )/(n!))  (x^4 +4x^3 +2x^2 )e^x =Σ_(n=1) ^∞ ((n^2 (n+1)x^(n+1) )/(n!))  (x^4 +8x^3 +14x^2 +4x)e^x =Σ_(n=1) ^∞ ((n^2 (n+1)^2 x^n )/(n!))  ⇒S(x)=(x^4 +8x^3 +14x^2 +4x)e^x
$${e}^{{x}} −\mathrm{1}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}−\mathrm{1}} }{{n}!} \\ $$$${xe}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}} }{{n}!} \\ $$$$\left({x}+\mathrm{1}\right){e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}−\mathrm{1}} }{{n}!} \\ $$$$\left({x}^{\mathrm{3}} +{x}^{\mathrm{2}} \right){e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}+\mathrm{1}} }{{n}!} \\ $$$$\left({x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{x}\right){e}^{\mathrm{3}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right){x}^{{n}} }{{n}!} \\ $$$$\left({x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} \right){e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right){x}^{{n}+\mathrm{1}} }{{n}!} \\ $$$$\left({x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{3}} +\mathrm{14}{x}^{\mathrm{2}} +\mathrm{4}{x}\right){e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} {x}^{{n}} }{{n}!} \\ $$$$\Rightarrow{S}\left({x}\right)=\left({x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{3}} +\mathrm{14}{x}^{\mathrm{2}} +\mathrm{4}{x}\right){e}^{{x}} \\ $$
Commented by SEKRET last updated on 08/Dec/22
  super
$$\:\:\boldsymbol{\mathrm{super}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *