Question Number 117496 by bemath last updated on 12/Oct/20
$$\int\:\frac{\mathrm{sec}\:^{\mathrm{2}} \theta\:\mathrm{tan}\:^{\mathrm{2}} \theta}{\:\sqrt{\mathrm{9}−\mathrm{tan}\:^{\mathrm{2}} \theta}}\:\mathrm{d}\theta\:=? \\ $$
Answered by Dwaipayan Shikari last updated on 12/Oct/20
$$\int\frac{{t}^{\mathrm{2}} {dt}}{\:\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }}\:\:\:\:\:\:\:\:{t}={tan}\theta \\ $$$$=−\int\frac{\mathrm{9}−{t}^{\mathrm{2}} }{\:\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }}+\int\frac{\mathrm{9}}{\:\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }} \\ $$$$=−\int\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }+\mathrm{9}\int\frac{\mathrm{3}{cos}\theta}{\:\sqrt{\mathrm{9}−\mathrm{9}{sin}^{\mathrm{2}} \theta}}{d}\theta\:\:\:\:\:\:\:\:\:\:{t}=\mathrm{3}{sinx} \\ $$$$=−\mathrm{3}\int{cosx}\sqrt{\mathrm{9}−\mathrm{9}{sin}^{\mathrm{2}} {x}}\:{dx}+\mathrm{9}\int{dx}\:\:\: \\ $$$$=−\int\mathrm{9}{cos}^{\mathrm{2}} {x}+\mathrm{9}{x} \\ $$$$=\int−\frac{\mathrm{9}}{\mathrm{2}}−\frac{\mathrm{9}}{\mathrm{2}}{cos}\mathrm{2}{x}+\mathrm{9}{x} \\ $$$$=−\frac{\mathrm{9}}{\mathrm{2}}{x}−\frac{\mathrm{9}}{\mathrm{4}}{sin}\mathrm{2}{x}+\mathrm{9}{x} \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{t}}{\mathrm{3}}−\frac{\mathrm{9}}{\mathrm{2}}.\frac{{t}}{\mathrm{3}}\sqrt{\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{9}}}\:\:\:\:\:\:\:\:\:\:\:\:{sin}\mathrm{2}{x}=\mathrm{2}{sinxcosx}=\mathrm{2}\frac{{t}}{\mathrm{3}}\sqrt{\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{9}}} \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{t}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}}{t}\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }\:+{C} \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{{tan}\theta}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}}{tan}\theta\sqrt{\mathrm{9}−{tan}^{\mathrm{2}} \theta}+{C} \\ $$
Answered by MJS_new last updated on 12/Oct/20
$$\int\frac{\mathrm{sec}^{\mathrm{2}} \:\theta\:\mathrm{tan}^{\mathrm{2}} \:\theta}{\:\sqrt{\mathrm{9}−\mathrm{tan}^{\mathrm{2}} \:\theta}}{d}\theta= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\theta\:\rightarrow\:{d}\theta=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\int\frac{{t}^{\mathrm{2}} }{\:\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }}{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{arcsin}\:\frac{{t}}{\mathrm{3}}\:\rightarrow\:{dt}=\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }{du}\right] \\ $$$$=\mathrm{9}\int\mathrm{sin}^{\mathrm{2}} \:{u}\:{du}=\frac{\mathrm{9}}{\mathrm{2}}\int\mathrm{1}−\mathrm{cos}\:\mathrm{2}{u}\:{du}= \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}{u}−\frac{\mathrm{9}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{u}\:=\frac{\mathrm{9}}{\mathrm{2}}{u}−\frac{\mathrm{9}}{\mathrm{2}}\mathrm{sin}\:{u}\:\mathrm{cos}\:{u}\:= \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}\mathrm{arcsin}\:\frac{{t}}{\mathrm{3}}\:−\frac{{t}\sqrt{\mathrm{9}−{t}^{\mathrm{2}} }}{\mathrm{2}}= \\ $$$$=\frac{\mathrm{9}}{\mathrm{2}}\mathrm{arcsin}\:\frac{\mathrm{tan}\:{x}}{\mathrm{3}}\:−\frac{\mathrm{tan}\:{x}\:\sqrt{\mathrm{9}−\mathrm{tan}^{\mathrm{2}} \:{x}}}{\mathrm{2}}+{C} \\ $$