Menu Close

sec-2-x-3sin-2-x-1-dx-




Question Number 156305 by cortano last updated on 10/Oct/21
  ∫ ((sec^2 (x))/(3sin^2 (x)−1)) dx
sec2(x)3sin2(x)1dx
Answered by puissant last updated on 10/Oct/21
Ω=∫((sec^2 x)/(3sin^2 x−1))dx = ∫((sec^4 x)/(3tan^2 x−sec^2 x))dx  u=tanx → du=sec^2 xdx=(1+u^2 )du  ⇒ Ω=∫((1+u^2 )/(3u^2 −(1+u^2 )))du=∫((1+u^2 )/(2u^2 −1))du  Ω=∫(1/(2u^2 −1))du+∫(u^2 /(2u^2 −1))du  =(1/2)∫(du/(u^2 −(1/2)))+(1/2)∫((2u^2 −1+1)/(2u^2 −1))du  =(1/2)∫(du/(u^2 −(1/2)))+(1/4)∫(du/(u^2 −(1/2)))+(1/2)∫du =(3/4)∫(du/(u^2 −(1/2)))+(1/2)∫du  =−(6/4)∫(du/(1−((u/( (√2))))))−(u/2) = −((6(√2))/4) argtanh((√2)u)−(u/2)+C..    ∴∵  Ω = −((3(√2))/2) argtanh((√2)tanx)−((tanx)/2)+C
Ω=sec2x3sin2x1dx=sec4x3tan2xsec2xdxu=tanxdu=sec2xdx=(1+u2)duΩ=1+u23u2(1+u2)du=1+u22u21duΩ=12u21du+u22u21du=12duu212+122u21+12u21du=12duu212+14duu212+12du=34duu212+12du=64du1(u2)u2=624argtanh(2u)u2+C..∴∵Ω=322argtanh(2tanx)tanx2+C
Commented by cortano last updated on 10/Oct/21
ok. i got in tan x form.
ok.igotintanxform.
Commented by puissant last updated on 10/Oct/21
Okey...
Okey
Commented by puissant last updated on 10/Oct/21
Mr Cortano , another important   formula :  argth(x)+C=(1/2)ln(((x+1)/(x−1)))+C=∫(1/(x^2 −1))dx..
MrCortano,anotherimportantformula:argth(x)+C=12ln(x+1x1)+C=1x21dx..
Commented by cortano last updated on 10/Oct/21
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *