Question Number 19077 by Joel577 last updated on 04/Aug/17
$$\int\:\mathrm{sec}^{\mathrm{3}} \:{x}\:{dx} \\ $$
Answered by ajfour last updated on 04/Aug/17
$$\mathrm{I}=\int\mathrm{sec}\:\theta\left(\mathrm{sec}\:^{\mathrm{2}} \theta\mathrm{d}\theta\right) \\ $$$$=\mathrm{sec}\:\theta\int\mathrm{sec}\:^{\mathrm{2}} \theta\mathrm{d}\theta−\int\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\mathrm{sec}\:\theta\right).\int\mathrm{sec}\:^{\mathrm{2}} \theta\mathrm{d}\theta\right]\mathrm{d}\theta \\ $$$$=\mathrm{sec}\:\theta\mathrm{tan}\:\theta−\int\left(\mathrm{sec}\:\theta\mathrm{tan}\:\theta\right)\mathrm{tan}\:\theta\mathrm{d}\theta+\mathrm{C}_{\mathrm{1}} \\ $$$$=\mathrm{sec}\:\theta\mathrm{tan}\:\theta−\int\left(\mathrm{sec}\:\theta\right)\left(\mathrm{sec}\:^{\mathrm{2}} \theta−\mathrm{1}\right)\mathrm{d}\theta+\mathrm{C}_{\mathrm{1}} \\ $$$$\mathrm{I}=\mathrm{sec}\:\theta\mathrm{tan}\:\theta−\int\mathrm{sec}\:^{\mathrm{3}} \theta\mathrm{d}\theta+\int\mathrm{sec}\:\theta\mathrm{d}\theta+\mathrm{C}_{\mathrm{1}} \\ $$$$\mathrm{I}=\mathrm{sec}\:\theta\mathrm{tan}\:\theta−\mathrm{I}+\mathrm{ln}\:\mid\mathrm{sec}\:\theta+\mathrm{tan}\:\theta\mid+\mathrm{C}_{\mathrm{1}} +\mathrm{C}_{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:\theta\mathrm{tan}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\mid\mathrm{sec}\:\theta+\mathrm{tan}\:\theta\mid+\mathrm{C}\:. \\ $$
Commented by Joel577 last updated on 04/Aug/17
$${thank}\:{you}\:{very}\:{much} \\ $$