Menu Close

sec-3x-6cos-3x-4sin-3x-find-the-solution-




Question Number 160815 by cortano last updated on 07/Dec/21
    sec (3x)−6cos (3x)=4sin (3x)      find the solution
$$\:\:\:\:\mathrm{sec}\:\left(\mathrm{3x}\right)−\mathrm{6cos}\:\left(\mathrm{3x}\right)=\mathrm{4sin}\:\left(\mathrm{3x}\right) \\ $$$$\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{solution} \\ $$
Commented by blackmamba last updated on 07/Dec/21
 ⇒(1/(cos 3x)) −6cos 3x = 4sin 3x   ⇒(1/t) − 6t = 4(√(1−t^2 )) ; [ t = cos 3x ]  ⇒1−6t^2  = 4t (√(1−t^2 ))  ⇒1−12t^2 +36t^4 = 16t^2 (1−t^2 )  ⇒52t^4 −28t^2 +1 = 0  ⇒t^2  = ((28+(√(28^2 −4×52)))/(104))=((28+24)/(104))  ⇒t^2 = (1/2); t=± (1/2)(√2)  case(1) t=(1/2)(√2) ⇒cos 3x=cos 45°  ⇒x=±15°+k.120°  case(2)t=−(1/2)(√2) ⇒cos 3x=cos 135°  ⇒x=±45°+k.120°
$$\:\Rightarrow\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{3}{x}}\:−\mathrm{6cos}\:\mathrm{3}{x}\:=\:\mathrm{4sin}\:\mathrm{3}{x}\: \\ $$$$\Rightarrow\frac{\mathrm{1}}{{t}}\:−\:\mathrm{6}{t}\:=\:\mathrm{4}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }\:;\:\left[\:{t}\:=\:\mathrm{cos}\:\mathrm{3}{x}\:\right] \\ $$$$\Rightarrow\mathrm{1}−\mathrm{6}{t}^{\mathrm{2}} \:=\:\mathrm{4}{t}\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{1}−\mathrm{12}{t}^{\mathrm{2}} +\mathrm{36}{t}^{\mathrm{4}} =\:\mathrm{16}{t}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{52}{t}^{\mathrm{4}} −\mathrm{28}{t}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Rightarrow{t}^{\mathrm{2}} \:=\:\frac{\mathrm{28}+\sqrt{\mathrm{28}^{\mathrm{2}} −\mathrm{4}×\mathrm{52}}}{\mathrm{104}}=\frac{\mathrm{28}+\mathrm{24}}{\mathrm{104}} \\ $$$$\Rightarrow{t}^{\mathrm{2}} =\:\frac{\mathrm{1}}{\mathrm{2}};\:{t}=\pm\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}} \\ $$$${case}\left(\mathrm{1}\right)\:{t}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{cos}\:\mathrm{3}{x}=\mathrm{cos}\:\mathrm{45}° \\ $$$$\Rightarrow{x}=\pm\mathrm{15}°+{k}.\mathrm{120}° \\ $$$${case}\left(\mathrm{2}\right){t}=−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{cos}\:\mathrm{3}{x}=\mathrm{cos}\:\mathrm{135}° \\ $$$$\Rightarrow{x}=\pm\mathrm{45}°+{k}.\mathrm{120}° \\ $$
Answered by mr W last updated on 08/Dec/21
(1/(cos 3x))−6 cos 3x=4 sin 3x  1−6 cos^2  3x=4 sin 3x cos 3x  1−3(cos 6x+1)=2 sin 6x  2 sin 6x+3 cos 6x=−2  (2/( (√(13)))) sin 6x+(3/( (√(13)))) cos 6x=−(2/( (√(13))))  with α=tan^(−1) (3/2)  sin (6x+α)=−cos α=−sin ((π/2)−α)  6x+α=nπ−(−1)^n ((π/2)−α)  ⇒x=(1/6){nπ−(−1)^n (π/2)+[(−1)^n −1]tan^(−1) (3/2)}  = { ((((4k−1)π)/(12))),(((((4k+3)π)/(12))−(1/3) tan^(−1) (3/2))) :}
$$\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{3}{x}}−\mathrm{6}\:\mathrm{cos}\:\mathrm{3}{x}=\mathrm{4}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\mathrm{1}−\mathrm{6}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{3}{x}=\mathrm{4}\:\mathrm{sin}\:\mathrm{3}{x}\:\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\mathrm{1}−\mathrm{3}\left(\mathrm{cos}\:\mathrm{6}{x}+\mathrm{1}\right)=\mathrm{2}\:\mathrm{sin}\:\mathrm{6}{x} \\ $$$$\mathrm{2}\:\mathrm{sin}\:\mathrm{6}{x}+\mathrm{3}\:\mathrm{cos}\:\mathrm{6}{x}=−\mathrm{2} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\:\mathrm{sin}\:\mathrm{6}{x}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}\:\mathrm{cos}\:\mathrm{6}{x}=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}} \\ $$$${with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\mathrm{sin}\:\left(\mathrm{6}{x}+\alpha\right)=−\mathrm{cos}\:\alpha=−\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\mathrm{6}{x}+\alpha={n}\pi−\left(−\mathrm{1}\right)^{{n}} \left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}}{\mathrm{6}}\left\{{n}\pi−\left(−\mathrm{1}\right)^{{n}} \frac{\pi}{\mathrm{2}}+\left[\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right]\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$$$=\begin{cases}{\frac{\left(\mathrm{4}{k}−\mathrm{1}\right)\pi}{\mathrm{12}}}\\{\frac{\left(\mathrm{4}{k}+\mathrm{3}\right)\pi}{\mathrm{12}}−\frac{\mathrm{1}}{\mathrm{3}}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *