Question Number 57572 by cesar.marval.larez@gmail.com last updated on 07/Apr/19
$$\int\mathrm{sec}^{\mathrm{4}} \mathrm{2xdx} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Apr/19
$$\int{sec}^{\mathrm{2}} \mathrm{2}{x}×{sec}^{\mathrm{2}} \mathrm{2}{xdx} \\ $$$$\int\left(\mathrm{1}+{tan}^{\mathrm{2}} \mathrm{2}{x}\right){sec}^{\mathrm{2}} \mathrm{2}{xdx} \\ $$$${t}={tan}\mathrm{2}{x} \\ $$$$\frac{{dt}}{{dx}}={sec}^{\mathrm{2}} \mathrm{2}{x}×\mathrm{2} \\ $$$${sec}^{\mathrm{2}} \mathrm{2}{xdx}=\frac{{dt}}{\mathrm{2}} \\ $$$$\int\left(\mathrm{1}+{t}^{\mathrm{2}} \right)×\frac{{dt}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\int{dt}+\int{t}^{\mathrm{2}} {dt}\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({t}+\frac{{t}^{\mathrm{3}} }{\mathrm{3}}\right)+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({tan}\mathrm{2}{x}+\frac{{tan}^{\mathrm{3}} \mathrm{2}{x}}{\mathrm{3}}\right)+{c} \\ $$$$ \\ $$$$ \\ $$