Menu Close

sec-d-1-sec-




Question Number 21679 by Arnab Maiti last updated on 30/Sep/17
∫((secθ dθ)/(1−secθ))
secθdθ1secθ
Answered by alex041103 last updated on 30/Sep/17
First we make the following transformations:  ∫((secθ dθ)/(1−secθ))=∫((1/(cosθ))/(1−(1/(cosθ))))dθ=  =∫((1/(cosθ))/(1−(1/(cosθ)))) ((cosθ)/(cosθ))dθ=  =∫(1/(cosθ−1))dθ  Also by the double angle indetity  we have cosθ=1−2sin^2 ((θ/2))  ⇒∫(1/(cosθ−1))dθ=−∫(1/(sin^2 ((θ/2)))) (dθ/2)  Let x=(θ/2)⇒dx=(dθ/2)  ∫(1/(cosθ−1))dθ=∫−csc^2 x dx=I  We know that (d/dx)(ctg x)=−csc^2 x  ⇒∫((secθ)/(1−secθ))dθ=ctg((θ/2))+C
Firstwemakethefollowingtransformations:secθdθ1secθ=1cosθ11cosθdθ==1cosθ11cosθcosθcosθdθ==1cosθ1dθAlsobythedoubleangleindetitywehavecosθ=12sin2(θ2)1cosθ1dθ=1sin2(θ2)dθ2Letx=θ2dx=dθ21cosθ1dθ=csc2xdx=IWeknowthatddx(ctgx)=csc2xsecθ1secθdθ=ctg(θ2)+C

Leave a Reply

Your email address will not be published. Required fields are marked *