Question Number 96613 by s.ayeni14@yahoo.com last updated on 03/Jun/20
$$\int\mathrm{sec}\theta\mathrm{d}\theta \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int{sec}\left(\theta\right)\frac{{sec}\left(\theta\right)+{tan}\left(\theta\right)}{{sec}\left(\theta\right)+{tan}\left(\theta\right)}{d}\theta \\ $$$$={ln}\mid{sec}\left(\theta\right)+{tan}\left(\theta\right)\mid+{c} \\ $$$${i}\:{have}\:{more}\:{than}\:\mathrm{9}\:{ways}\:{to}\:{solve}\:{this} \\ $$$${integral}\:{i}\:{will}\:{post}\:{them}\:{later} \\ $$
Commented by s.ayeni14@yahoo.com last updated on 03/Jun/20
$$\mathrm{ok}\:\mathrm{sir} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$=\int{sec}\left({x}\right)+{tan}\left({x}\right)−{tan}\left({x}\right)\:{dx} \\ $$$$=\int\frac{\mathrm{1}−{sin}\left({x}\right)}{{cos}\left({x}\right)}{dx}+\int{tan}\left({x}\right){dx} \\ $$$$=\int\frac{{cos}\left({x}\right)}{\mathrm{1}+{sin}\left({x}\right)}{dx}+\int\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)}{dx} \\ $$$${ln}\mid\mathrm{1}+{sin}\left({x}\right)\mid−{ln}\mid{cos}\left({x}\right)\mid+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$=\int\frac{\mathrm{1}}{{sin}\left(\frac{\pi}{\mathrm{2}}−{x}\right)}{dx} \\ $$$$=\int\frac{\mathrm{1}}{\mathrm{2}{sin}\left(\frac{\pi}{\mathrm{4}}−{x}\right){cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right)}.\frac{{sec}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)}{{sec}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{sec}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)}{{tan}\left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$=−{ln}\mid{tan}\left(\frac{\pi}{\mathrm{4}}−\frac{{x}}{\mathrm{2}}\right)\mid+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int{sec}\left({x}\right)+{tan}\left({x}\right)−{tan}\left({x}\right)\:{dx} \\ $$$$\int\frac{\mathrm{1}+{sin}\left({x}\right)}{{cos}\left({x}\right)}{dx}−\int{tan}\left({x}\right){dx} \\ $$$$\int\frac{\left({cos}\frac{{x}}{\mathrm{2}}+{sin}\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}} }{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)−{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{dx}+{ln}\mid{cos}\left({x}\right)\mid \\ $$$$=−\mathrm{2}{ln}\mid{cos}\left(\frac{{x}}{\mathrm{2}}\right)−\frac{{x}}{\mathrm{2}}\mid+{ln}\mid{cos}\left({x}\right)\mid+{c} \\ $$$$ \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$=\int{sec}\left({x}\right)\frac{{tan}\left({x}\right)}{{tan}\left({x}\right)}{dx} \\ $$$$=\int\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\:\sqrt{{sec}^{\mathrm{2}} \left({x}\right)−\mathrm{1}}}{dx} \\ $$$$={cosh}^{−\mathrm{1}} \left({sec}\left({x}\right)\right)+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int\frac{{sin}\left({x}\right)}{{sin}\left({x}\right){cos}\left({x}\right)}{dx} \\ $$$$\int\frac{{sin}\left({x}\right)}{{cos}\left({x}\right)\sqrt{\mathrm{1}−{cos}^{\mathrm{2}} \left({x}\right)}}{dx} \\ $$$$={sech}^{−\mathrm{1}} \left({cos}\left({x}\right)\right)+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int\frac{{csc}\left({x}\right)}{{cot}\left({x}\right)}{dx} \\ $$$$\int\frac{{csc}\left({x}\right){cot}\left({x}\right)}{{cot}\left({x}\right)}{dx} \\ $$$$\int\frac{−\mathrm{1}}{{csc}^{\mathrm{2}} \left({x}\right)−\mathrm{1}}{d}\left({csc}\left({x}\right)\right) \\ $$$${coth}^{−\mathrm{1}} \left({csc}\left({x}\right)\right)+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)−{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}.\frac{{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$\int\frac{{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$\mathrm{2}\int\frac{−\frac{\mathrm{1}}{\mathrm{2}}{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)−\mathrm{1}}{dx} \\ $$$$=\mathrm{2}{coth}^{−\mathrm{1}} \left({tan}\left(\frac{{x}}{\mathrm{2}}\right)\right)+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int\frac{{csc}\left({x}\right)}{{cot}\left({x}\right)}{dx} \\ $$$$\int\frac{{csc}^{\mathrm{2}} \left({x}\right)}{{csc}\left({x}\right){cot}\left({x}\right)}{dx} \\ $$$$\int\frac{{csc}^{\mathrm{2}} \left({x}\right)}{{cot}\left({x}\right)\sqrt{{cot}^{\mathrm{2}} \left({x}\right)+\mathrm{1}}}{dx} \\ $$$${csch}^{−\mathrm{1}} \left({cot}\left({x}\right)\right)+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int\frac{{sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{dx} \\ $$$$\int\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right){sec}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\left(\sqrt{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\right)^{\mathrm{2}} {tan}\frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\sqrt{\mathrm{1}−\left(\sqrt{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}\right)^{\mathrm{2}} }}.\frac{\mathrm{2}{tan}\frac{{x}}{\mathrm{2}}\:{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}}{dx} \\ $$$$=\mathrm{2}{sech}^{−\mathrm{1}} \sqrt{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\:\sqrt{{sec}^{\mathrm{2}} \left({x}\right)−\mathrm{1}}}{dx}=\int\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\:\sqrt{{sec}\left({x}\right)−\mathrm{1}}\sqrt{{sec}\left({x}\right)+\mathrm{1}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\:\sqrt{\frac{{sec}\left({x}\right)−\mathrm{1}}{\mathrm{2}}}\sqrt{\frac{{sec}\left({x}\right)+\mathrm{1}}{\mathrm{2}}}}{dx} \\ $$$$=\mathrm{2}\int\frac{\mathrm{1}}{\:\sqrt{\left(\sqrt{\frac{{sec}\left({x}\right)+\mathrm{1}}{\mathrm{2}}}\right)^{\mathrm{2}} −\mathrm{1}}}.\frac{\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\mathrm{2}}}{\mathrm{2}\sqrt{\frac{{sec}\left({x}\right)+\mathrm{1}}{\mathrm{2}}}} \\ $$$$=\mathrm{2}{cosh}^{−\mathrm{1}} \left(\sqrt{\frac{{sec}\left({x}\right)+\mathrm{1}}{\mathrm{2}}}\right)+{c} \\ $$
Answered by M±th+et+s last updated on 03/Jun/20
$$\int{sec}\left({x}\right){dx}=\int\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\:\sqrt{{sec}^{\mathrm{2}} \left({x}\right)−\mathrm{1}}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\:\sqrt{\frac{{sec}\left({x}\right)−\mathrm{1}}{\mathrm{2}}}\sqrt{\frac{{sec}\left({x}\right)+\mathrm{1}}{\mathrm{2}}}}{dx} \\ $$$$=\int\frac{\mathrm{1}}{\:\sqrt{\frac{{sec}\left({x}\right)−\mathrm{1}}{\mathrm{2}}+\mathrm{1}}}.\frac{{sec}\left({x}\right){tan}\left({x}\right)}{\mathrm{2}\sqrt{\frac{{sec}\left({x}\right)−\mathrm{1}}{\mathrm{2}}}}{dx} \\ $$$$=\mathrm{2}{sinh}^{−} \left(\sqrt{\frac{{sec}\left({x}\right)−\mathrm{1}}{\mathrm{2}}}\right)+{c} \\ $$$$ \\ $$$${and}\:{mybe}\:{there}\:{are}\:{another}\:{ways} \\ $$
Answered by Rio Michael last updated on 03/Jun/20
$$\mathrm{hahahaha}\:\mathrm{great}\:\mathrm{work}\:\mathrm{sir}! \\ $$$$\mathrm{but}\:\mathrm{one}\:\mathrm{method}\:\mathrm{left}. \\ $$$$\:\int\:\mathrm{sec}\:\theta\:{d}\theta\:=\:\int\frac{\mathrm{sec}\:\theta\left(\:\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\right)}{\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta}\:{d}\theta\:=\:\int\frac{\mathrm{sec}^{\mathrm{2}} \theta\:+\:\mathrm{sec}\theta\:\mathrm{tan}\theta}{\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta}\:{d}\theta \\ $$$$\mathrm{let}\:{u}\:=\:\mathrm{sec}\:\theta\:+\:\mathrm{tan}\:\theta\:\Rightarrow\:{du}\:=\:\left(\mathrm{sec}\:\theta\:\mathrm{tan}\theta\:+\:\mathrm{sec}^{\mathrm{2}} \theta\right){d}\theta\:\:=\:\left(\mathrm{sec}^{\mathrm{2}} \theta\:+\:\mathrm{sec}\theta\:\mathrm{tan}\theta\right){d}\theta \\ $$$$\:\Rightarrow\:\int\:\mathrm{sec}\:\theta\:{d}\theta\:=\:\int\frac{{du}}{{u}}\:\mathrm{after}\:\mathrm{substitution}\:=\:\mathrm{ln}\mid{u}\mid\:+\:{k} \\ $$$$\Rightarrow\:\int\mathrm{sec}\:\theta\:{d}\theta\:=\:\mathrm{ln}\mid\:\mathrm{sec}\:\theta\:+\mathrm{tan}\:\theta\mid\:+\:{k} \\ $$$$\: \\ $$