Menu Close

sec-d-




Question Number 96613 by s.ayeni14@yahoo.com last updated on 03/Jun/20
∫secθdθ
secθdθ
Answered by  M±th+et+s last updated on 03/Jun/20
∫sec(θ)((sec(θ)+tan(θ))/(sec(θ)+tan(θ)))dθ  =ln∣sec(θ)+tan(θ)∣+c  i have more than 9 ways to solve this  integral i will post them later
sec(θ)sec(θ)+tan(θ)sec(θ)+tan(θ)dθ=lnsec(θ)+tan(θ)+cihavemorethan9waystosolvethisintegraliwillpostthemlater
Commented by s.ayeni14@yahoo.com last updated on 03/Jun/20
ok sir
oksir
Answered by  M±th+et+s last updated on 03/Jun/20
=∫sec(x)+tan(x)−tan(x) dx  =∫((1−sin(x))/(cos(x)))dx+∫tan(x)dx  =∫((cos(x))/(1+sin(x)))dx+∫((sin(x))/(cos(x)))dx  ln∣1+sin(x)∣−ln∣cos(x)∣+c
=sec(x)+tan(x)tan(x)dx=1sin(x)cos(x)dx+tan(x)dx=cos(x)1+sin(x)dx+sin(x)cos(x)dxln1+sin(x)lncos(x)+c
Answered by  M±th+et+s last updated on 03/Jun/20
=∫(1/(sin((π/2)−x)))dx  =∫(1/(2sin((π/4)−x)cos((π/4)−x))).((sec^2 ((π/4)−(x/2)))/(sec^2 ((π/4)−(x/2))))dx  =(1/2)∫((sec^2 ((π/4)−(x/2)))/(tan((π/4)−(x/2))))dx  =−ln∣tan((π/4)−(x/2))∣+c
=1sin(π2x)dx=12sin(π4x)cos(π4x).sec2(π4x2)sec2(π4x2)dx=12sec2(π4x2)tan(π4x2)dx=lntan(π4x2)+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫sec(x)+tan(x)−tan(x) dx  ∫((1+sin(x))/(cos(x)))dx−∫tan(x)dx  ∫(((cos(x/2)+sin(x/2))^2 )/(cos^2 ((x/2))−sin^2 ((x/2))))dx+ln∣cos(x)∣  =−2ln∣cos((x/2))−(x/2)∣+ln∣cos(x)∣+c
sec(x)+tan(x)tan(x)dx1+sin(x)cos(x)dxtan(x)dx(cosx2+sinx2)2cos2(x2)sin2(x2)dx+lncos(x)=2lncos(x2)x2+lncos(x)+c
Answered by  M±th+et+s last updated on 03/Jun/20
=∫sec(x)((tan(x))/(tan(x)))dx  =∫((sec(x)tan(x))/( (√(sec^2 (x)−1))))dx  =cosh^(−1) (sec(x))+c
=sec(x)tan(x)tan(x)dx=sec(x)tan(x)sec2(x)1dx=cosh1(sec(x))+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫((sin(x))/(sin(x)cos(x)))dx  ∫((sin(x))/(cos(x)(√(1−cos^2 (x)))))dx  =sech^(−1) (cos(x))+c
sin(x)sin(x)cos(x)dxsin(x)cos(x)1cos2(x)dx=sech1(cos(x))+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫((csc(x))/(cot(x)))dx  ∫((csc(x)cot(x))/(cot(x)))dx  ∫((−1)/(csc^2 (x)−1))d(csc(x))  coth^(−1) (csc(x))+c
csc(x)cot(x)dxcsc(x)cot(x)cot(x)dx1csc2(x)1d(csc(x))coth1(csc(x))+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫(1/(cos^2 ((x/2))−sin^2 ((x/2)))).((sec^2 ((x/2)))/(sec^2 ((x/2))))dx  ∫((sec^2 ((x/2)))/(1−tan^2 ((x/2))))dx  2∫((−(1/2)sec^2 ((x/2)))/(tan^2 ((x/2))−1))dx  =2coth^(−1) (tan((x/2)))+c
1cos2(x2)sin2(x2).sec2(x2)sec2(x2)dxsec2(x2)1tan2(x2)dx212sec2(x2)tan2(x2)1dx=2coth1(tan(x2))+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫((csc(x))/(cot(x)))dx  ∫((csc^2 (x))/(csc(x)cot(x)))dx  ∫((csc^2 (x))/(cot(x)(√(cot^2 (x)+1))))dx  csch^(−1) (cot(x))+c
csc(x)cot(x)dxcsc2(x)csc(x)cot(x)dxcsc2(x)cot(x)cot2(x)+1dxcsch1(cot(x))+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫((sec^2 ((x/2)))/(1−tan^2 ((x/2))))dx  ∫((tan((x/2))sec^2 ((x/2)))/(((√(1−tan^2 ((x/2)))))^2 tan(x/2)))dx  ∫(1/( (√(1−tan^2 ((x/2))))(√(1−((√(1−tan^2 (x/2))))^2 )))).((2tan(x/2) sec^2 (x/2))/(2(√(1−tan^2 (x/2)))))dx  =2sech^(−1) (√(1−tan^2 ((x/2))))+c
sec2(x2)1tan2(x2)dxtan(x2)sec2(x2)(1tan2(x2))2tanx2dx11tan2(x2)1(1tan2x2)2.2tanx2sec2x221tan2x2dx=2sech11tan2(x2)+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫((sec(x)tan(x))/( (√(sec^2 (x)−1))))dx=∫((sec(x)tan(x))/( (√(sec(x)−1))(√(sec(x)+1))))dx  =(1/2)∫((sec(x)tan(x))/( (√((sec(x)−1)/2))(√((sec(x)+1)/2))))dx  =2∫(1/( (√(((√((sec(x)+1)/2)))^2 −1)))).(((sec(x)tan(x))/2)/(2(√((sec(x)+1)/2))))  =2cosh^(−1) ((√((sec(x)+1)/2)))+c
sec(x)tan(x)sec2(x)1dx=sec(x)tan(x)sec(x)1sec(x)+1dx=12sec(x)tan(x)sec(x)12sec(x)+12dx=21(sec(x)+12)21.sec(x)tan(x)22sec(x)+12=2cosh1(sec(x)+12)+c
Answered by  M±th+et+s last updated on 03/Jun/20
∫sec(x)dx=∫((sec(x)tan(x))/( (√(sec^2 (x)−1))))dx  =(1/2)∫((sec(x)tan(x))/( (√((sec(x)−1)/2))(√((sec(x)+1)/2))))dx  =∫(1/( (√(((sec(x)−1)/2)+1)))).((sec(x)tan(x))/(2(√((sec(x)−1)/2))))dx  =2sinh^− ((√((sec(x)−1)/2)))+c    and mybe there are another ways
sec(x)dx=sec(x)tan(x)sec2(x)1dx=12sec(x)tan(x)sec(x)12sec(x)+12dx=1sec(x)12+1.sec(x)tan(x)2sec(x)12dx=2sinh(sec(x)12)+candmybethereareanotherways
Answered by Rio Michael last updated on 03/Jun/20
hahahaha great work sir!  but one method left.   ∫ sec θ dθ = ∫((sec θ( sec θ + tan θ))/(sec θ + tan θ)) dθ = ∫((sec^2 θ + secθ tanθ)/(sec θ + tan θ)) dθ  let u = sec θ + tan θ ⇒ du = (sec θ tanθ + sec^2 θ)dθ  = (sec^2 θ + secθ tanθ)dθ   ⇒ ∫ sec θ dθ = ∫(du/u) after substitution = ln∣u∣ + k  ⇒ ∫sec θ dθ = ln∣ sec θ +tan θ∣ + k
hahahahagreatworksir!butonemethodleft.secθdθ=secθ(secθ+tanθ)secθ+tanθdθ=sec2θ+secθtanθsecθ+tanθdθletu=secθ+tanθdu=(secθtanθ+sec2θ)dθ=(sec2θ+secθtanθ)dθsecθdθ=duuaftersubstitution=lnu+ksecθdθ=lnsecθ+tanθ+k

Leave a Reply

Your email address will not be published. Required fields are marked *