Menu Close

sec-sec-sin-2-2-3-sin-1-has-the-roots-are-1-and-2-Find-the-value-of-tan-1-tan-2-




Question Number 115345 by bemath last updated on 25/Sep/20
sec θ (sec θ (sin^2 θ)+2(√3) sin θ)=1  has the roots are θ_1  and θ_2 . Find the  value of tan θ_1 ×tan θ_2 .
secθ(secθ(sin2θ)+23sinθ)=1hastherootsareθ1andθ2.Findthevalueoftanθ1×tanθ2.
Answered by bobhans last updated on 25/Sep/20
⇔ ((sin^2 θ)/(cos θ)) + 2(√3) sin θ = cos θ  ⇔ 2(√3) sin θ.cos θ = cos 2θ   ⇒ (√3) sin 2θ = cos 2θ → tan 2θ = (1/( (√3)))  →((2tan θ)/(1−tan^2 θ)) = (1/( (√3))) ⇒ tan^2 θ+2(√3) tan θ−1=0  just apply Vieta′s rule we get   tan θ_1 ×tan θ_2  = −1
sin2θcosθ+23sinθ=cosθ23sinθ.cosθ=cos2θ3sin2θ=cos2θtan2θ=132tanθ1tan2θ=13tan2θ+23tanθ1=0justapplyVietasrulewegettanθ1×tanθ2=1
Answered by Dwaipayan Shikari last updated on 25/Sep/20
((sin^2 θ)/(cos^2 θ))+((2(√3)sinθ)/(cosθ))=1  tan^2 θ+2(√3)tanθ−1=0  tanθ=((−2(√3)±(√(12+4)))/2)=2−(√3)  or −(2+(√3))  tanθ_1 =2−(√3)  tanθ_2 =−(2+(√3))  tanθ_1 .tanθ_2 =−1
sin2θcos2θ+23sinθcosθ=1tan2θ+23tanθ1=0tanθ=23±12+42=23or(2+3)tanθ1=23tanθ2=(2+3)tanθ1.tanθ2=1
Answered by MJS_new last updated on 25/Sep/20
(1/c)((s^2 /c)+2(√3)s)=1  t^2 +2(√3)t−1=0  ⇒ t_1 ×t_2 =−1
1c(s2c+23s)=1t2+23t1=0t1×t2=1

Leave a Reply

Your email address will not be published. Required fields are marked *