sec-x-1-2sec-x-cosec-x-cot-x-cosec-x-cot-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 160792 by cortano last updated on 06/Dec/21 ∫secx1+2secxcosecx−cotxcosecx+cotxdx=? Answered by chhaythean last updated on 06/Dec/21 =∫1cosxcosx+2cosx×1−cosxsinx1+cosxsinxdx=∫1cosxcosx+2cosx×1−cosx1+cosxdx=∫sinxcos2x+2cosx×11+cosxdx=∫sinx(cosx+1)2−1(1+cosx)dxletu=1+cosx⇒du=−sinxdx=−∫duu2−1×uletu=secy⇒du=secytanydy=−∫secytanytanysecydy=−y+c=−arcsec(u)+c=−arcsec(1+cosx)+cSo∫secx1+2secx×cosecx−cotxcosecx+cotxdx=−arcsec(1+cosx)+c Answered by MJS_new last updated on 06/Dec/21 letc=cosx→dx=−dc1−c2nowwehave−∫dc(c+1)cc+2=[t=c+2c→dc=−c3c+2dt]=2∫dtt2+1=2arctant=2arctanc+2c==2arctan2+cosxcosx+C Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-all-roots-6-2-i-1-3-by-using-demover-theorem-Next Next post: lim-x-0-2-cos-x-2-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.