Menu Close

sec-x-1-2sec-x-cosec-x-cot-x-cosec-x-cot-x-dx-




Question Number 160792 by cortano last updated on 06/Dec/21
   ∫ ((sec x)/( (√(1+2sec x)))) (√((cosec x−cot x)/(cosec x+cot x))) dx =?
secx1+2secxcosecxcotxcosecx+cotxdx=?
Answered by chhaythean last updated on 06/Dec/21
=∫((1/(cosx))/( (√((cosx+2)/(cosx)))))×(√(((1−cosx)/(sinx))/((1+cosx)/(sinx))))dx  =∫((1/(cosx))/( (√((cosx+2)/(cosx)))))×(√((1−cosx)/(1+cosx)))dx  =∫((sinx)/( (√(cos^2 x+2cosx))))×(1/(1+cosx))dx  =∫((sinx)/( (√((cosx+1)^2 −1))(1+cosx)))dx  let u=1+cosx⇒du=−sinxdx  =−∫(du/( (√(u^2 −1))×u))  let u=secy⇒du=secytanydy  =−∫((secytany)/( tanysecy))dy=−y+c  =−arcsec(u)+c  =−arcsec(1+cosx)+c  So  determinant (((∫((secx)/( (√(1+2secx))))×(√((cosecx−cotx)/(cosecx+cotx)))dx=−arcsec(1+cosx)+c)))
=1cosxcosx+2cosx×1cosxsinx1+cosxsinxdx=1cosxcosx+2cosx×1cosx1+cosxdx=sinxcos2x+2cosx×11+cosxdx=sinx(cosx+1)21(1+cosx)dxletu=1+cosxdu=sinxdx=duu21×uletu=secydu=secytanydy=secytanytanysecydy=y+c=arcsec(u)+c=arcsec(1+cosx)+cSosecx1+2secx×cosecxcotxcosecx+cotxdx=arcsec(1+cosx)+c
Answered by MJS_new last updated on 06/Dec/21
let c=cos x → dx=−(dc/( (√(1−c^2 ))))  now we have  −∫(dc/((c+1)(√c)(√(c+2))))=       [t=((√(c+2))/( (√c))) → dc=−(√c^3 )(√(c+2))dt]  =2∫(dt/(t^2 +1))=2arctan t =2arctan ((√(c+2))/( (√c))) =  =2arctan ((√(2+cos x))/( (√(cos x)))) +C
letc=cosxdx=dc1c2nowwehavedc(c+1)cc+2=[t=c+2cdc=c3c+2dt]=2dtt2+1=2arctant=2arctanc+2c==2arctan2+cosxcosx+C

Leave a Reply

Your email address will not be published. Required fields are marked *