Menu Close

sec-x-tan-x-dx-how-can-it-solve-




Question Number 151568 by tabata last updated on 21/Aug/21
∫ (√(sec(x)+tan(x))) dx    how can it solve
sec(x)+tan(x)dxhowcanitsolve
Answered by puissant last updated on 22/Aug/21
=∫(√((1/(cosx))+((sinx)/(cosx))))dx  t=tan(x/2) → dx=(2/(1+t^2 ))dt  K=∫(√(((1+t^2 )/(1−t^2 ))+((2t)/(1−t^2 ))))×(2/(1+t^2 ))dt  =∫(√(((1+t)^2 )/((1−t)(1+t))))×(2/(1+t^2 ))dt  =2∫(√((1+t)/(1−t)))×(1/(1+t^2 ))dt  u^2 =((1+t)/(1−t)) ⇒ u^2 −u^2 t=1+t ⇒ t(1+u^2 )=u^2 −1  ⇒ t=((u^2 −1)/(u^2 +1)) → dt=((2u(u^2 +1)−2u(u^2 −1))/((u^2 +1)^2 ))du  → dt=((4u)/((u^2 +1)^2 ))du  K=2∫((4u^2 )/((u^2 +1)^2 ))×(1/(1+(((u^2 −1)/(u^2 +1)))^2 ))du  K=2∫((4u^2 )/((u^2 +1)^2 ))×(((u^2 +1)^2 )/((u^2 +1)^2 +(u^2 −1)^2 ))du  K=8∫(u^2 /(u^4 +2u^2 +1+u^4 −2u^2 +1))du  K=8∫(u^2 /(2(u^4 +1)))du  K=4∫(u^2 /(u^4 +1))du  to be continued...
=1cosx+sinxcosxdxt=tanx2dx=21+t2dtK=1+t21t2+2t1t2×21+t2dt=(1+t)2(1t)(1+t)×21+t2dt=21+t1t×11+t2dtu2=1+t1tu2u2t=1+tt(1+u2)=u21t=u21u2+1dt=2u(u2+1)2u(u21)(u2+1)2dudt=4u(u2+1)2duK=24u2(u2+1)2×11+(u21u2+1)2duK=24u2(u2+1)2×(u2+1)2(u2+1)2+(u21)2duK=8u2u4+2u2+1+u42u2+1duK=8u22(u4+1)duK=4u2u4+1dutobecontinued
Commented by peter frank last updated on 22/Aug/21
4∫.(1/2).  ((2u^2 )/(1+u^4 ))=2∫((2u^2 )/(1+u^4 ))  2∫((2u^2 )/(1+u^4 ))=4∫(((u^2 +1)+(u^2 −1))/(1+u^4 ))du  4[∫((1+u^2 )/(1+u^4 ))du+∫((1−u^2 )/(1+u^4 ))du]  4[∫((1+(1/u^2 ))/((u−(1/u))^2 +2))+∫((1−(1/u^2 ))/((u+(1/u))^2 +2))  t=u−(1/u)  dt=(1+(1/u^2 ))du  x=u+(1/u)  dx=(1−(1/u^2 ))du  4[∫(1/2).(dt/(t^2 +2))+∫(1/2).∫(dx/(x^2 −2))  2[(1/( (√2)))tan^(−1) ((t/( (√2))))+(1/(2(√2)))ln (((x−(√2))/(x+(√2))))
4.12.2u21+u4=22u21+u422u21+u4=4(u2+1)+(u21)1+u4du4[1+u21+u4du+1u21+u4du]4[1+1u2(u1u)2+2+11u2(u+1u)2+2t=u1udt=(1+1u2)dux=u+1udx=(11u2)du4[12.dtt2+2+12.dxx222[12tan1(t2)+122ln(x2x+2)
Answered by peter frank last updated on 22/Aug/21
∫(√((1/(cos x))+((sin x)/(cos x)))) dx  ∫(√((1+sin x)/(cos x))) dx  ∫(√(((sin (x/2)+cos (x/2))^2 )/(cos^2 (x/2)−sin^2 (x/2)))) dx  ∫(√(((sin (x/2)+cos (x/2))^2 )/((cos(x/2)+sin (x/2))(cos(x/2)−sin (x/2))))) dx  ∫(√(((sin (x/2)+cos (x/2)))/((cos(x/2)−sin (x/2))))) dx  ∫sec^2 (x/2).(√(((tan (x/2)+1))/((1−tan (x/2))))) dx  u=tan (x/2)  du=(1/2)sec^2 (x/2)dx  ∫(√((u+1)/(1−u))) du.2  ∫2(√(((u+1)/(1−u)).((u+1)/(u−1)))) du.  ∫2.((u+1)/( (√(1−u^2 )))) du.
1cosx+sinxcosxdx1+sinxcosxdx(sinx2+cosx2)2cos2x2sin2x2dx(sinx2+cosx2)2(cosx2+sinx2)(cosx2sinx2)dx(sinx2+cosx2)(cosx2sinx2)dxsec2x2.(tanx2+1)(1tanx2)dxu=tanx2du=12sec2x2dxu+11udu.22u+11u.u+1u1du.2.u+11u2du.
Commented by talminator2856791 last updated on 22/Aug/21
 the font is so big! hahahahahah
thefontissobig!hahahahahah
Answered by MJS_new last updated on 22/Aug/21
∫(√(sec x +tan x)) dx=       [t=tan (x/2) → dx=((2dt)/(1+t^2 ))]  =2∫((√(1+t))/((1+t^2 )(√(1−t))))dt=       [u=((√(1−t))/( (√(1+t)))) → dt=−(√((1−t)(1+t)^3 )) du]  =−4∫(du/(u^4 +1))=  =(1/( (√2)))∫((2u−(√2))/(u^2 −(√2)u+1))du−∫(du/(u^2 −(√2)u+1))−       −(1/( (√2)))∫((2u+(√2))/(u^2 +(√2)u+1))du−∫(du/(u^2 +(√2)u+1))=  =((√2)/2)ln (u^2 −(√2)u+1) −(√2)arctan ((√2)u−1) −       +((√2)/2)ln (u^2 +(√2)u+1) −(√2)arctan ((√2)u+1)  ...
secx+tanxdx=[t=tanx2dx=2dt1+t2]=21+t(1+t2)1tdt=[u=1t1+tdt=(1t)(1+t)3du]=4duu4+1==122u2u22u+1duduu22u+1122u+2u2+2u+1duduu2+2u+1==22ln(u22u+1)2arctan(2u1)+22ln(u2+2u+1)2arctan(2u+1)
Commented by peter frank last updated on 22/Aug/21
thank you
thankyou
Answered by Ar Brandon last updated on 22/Aug/21
I=∫(√(secx+tanx))dx=∫(√((1+sinx)/(cosx)))dx    =∫(√(((cos(x/2)+sin(x/2))^2 )/(cosx)))dx=∫((cos(x/2)+sin(x/2))/( (√(cosx))))dx    =∫((cos(x/2))/( (√(1−2sin^2 (x/2)))))dx+∫((sin(x/2))/( (√(2cos^2 (x/2)−1))))dx    =(√2)arcsin((√2)sin(x/2))−(√2)argcosh((√2)cos(x/2))+C    =(√2)arcsin((√2)sin(x/2))−(√2)ln∣(√2)cos(x/2)+(√(2cos^2 (x/2)−1))∣+C
I=secx+tanxdx=1+sinxcosxdx=(cosx2+sinx2)2cosxdx=cosx2+sinx2cosxdx=cosx212sin2x2dx+sinx22cos2x21dx=2arcsin(2sinx2)2argcosh(2cosx2)+C=2arcsin(2sinx2)2ln2cosx2+2cos2x21+C
Commented by peter frank last updated on 22/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *