Question Number 151568 by tabata last updated on 21/Aug/21

Answered by puissant last updated on 22/Aug/21

Commented by peter frank last updated on 22/Aug/21
![4∫.(1/2). ((2u^2 )/(1+u^4 ))=2∫((2u^2 )/(1+u^4 )) 2∫((2u^2 )/(1+u^4 ))=4∫(((u^2 +1)+(u^2 −1))/(1+u^4 ))du 4[∫((1+u^2 )/(1+u^4 ))du+∫((1−u^2 )/(1+u^4 ))du] 4[∫((1+(1/u^2 ))/((u−(1/u))^2 +2))+∫((1−(1/u^2 ))/((u+(1/u))^2 +2)) t=u−(1/u) dt=(1+(1/u^2 ))du x=u+(1/u) dx=(1−(1/u^2 ))du 4[∫(1/2).(dt/(t^2 +2))+∫(1/2).∫(dx/(x^2 −2)) 2[(1/( (√2)))tan^(−1) ((t/( (√2))))+(1/(2(√2)))ln (((x−(√2))/(x+(√2))))](https://www.tinkutara.com/question/Q151583.png)
Answered by peter frank last updated on 22/Aug/21

Commented by talminator2856791 last updated on 22/Aug/21

Answered by MJS_new last updated on 22/Aug/21
![∫(√(sec x +tan x)) dx= [t=tan (x/2) → dx=((2dt)/(1+t^2 ))] =2∫((√(1+t))/((1+t^2 )(√(1−t))))dt= [u=((√(1−t))/( (√(1+t)))) → dt=−(√((1−t)(1+t)^3 )) du] =−4∫(du/(u^4 +1))= =(1/( (√2)))∫((2u−(√2))/(u^2 −(√2)u+1))du−∫(du/(u^2 −(√2)u+1))− −(1/( (√2)))∫((2u+(√2))/(u^2 +(√2)u+1))du−∫(du/(u^2 +(√2)u+1))= =((√2)/2)ln (u^2 −(√2)u+1) −(√2)arctan ((√2)u−1) − +((√2)/2)ln (u^2 +(√2)u+1) −(√2)arctan ((√2)u+1) ...](https://www.tinkutara.com/question/Q151584.png)
Commented by peter frank last updated on 22/Aug/21

Answered by Ar Brandon last updated on 22/Aug/21

Commented by peter frank last updated on 22/Aug/21
