Menu Close

secxdx-




Question Number 17939 by ibraheem160 last updated on 12/Jul/17
∫secxdx
$$\int{secxdx}\: \\ $$
Commented by prakash jain last updated on 12/Jul/17
sec x=((sec x(sec x+tan x))/(sec x+tan x))  ∫sec x dx=∫((d(sec x+tan x))/(sec x+tan x))
$$\mathrm{sec}\:{x}=\frac{\mathrm{sec}\:{x}\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)}{\mathrm{sec}\:{x}+\mathrm{tan}\:{x}} \\ $$$$\int\mathrm{sec}\:{x}\:\mathrm{d}{x}=\int\frac{{d}\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)}{\mathrm{sec}\:{x}+\mathrm{tan}\:{x}} \\ $$
Answered by Tinkutara last updated on 12/Jul/17
ln ∣sec x + tan x∣ + C
$$\mathrm{ln}\:\mid\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\mid\:+\:{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *