Menu Close

selective-Binomial-




Question Number 120636 by TANMAY PANACEA last updated on 01/Nov/20
selective Binomial
selectiveBinomial
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by Dwaipayan Shikari last updated on 01/Nov/20
S=(1/(1!(n−1)!))+(1/(3!(n−3)!))+...  S=(n/(n!))+((n(n−1)(n−2))/(3!n!))+((n(n−1)(n−2)(n−3)(n−4))/(5!n!))+...  =(1/(n!))(n+((n(n−1)(n−2))/(3!))+((n(n−1)(n−2)(n−3)(n−4))/(5!))+...)  =(2^(n−1) /(n!))  (1+x)^n =1+nx+((n(n−1))/(2!))x^2 +...  (1−x)^n =1−nx+((n(n−1))/(2!))x^2 −..  (((1+x)^n −(1−x)^n )/2)=nx+((n(n−1)(n−2))/(3!))x^3 +...  2^(n−1) =(n+((n(n−1)(n−2))/(3!))+...)   (x=1)
S=11!(n1)!+13!(n3)!+S=nn!+n(n1)(n2)3!n!+n(n1)(n2)(n3)(n4)5!n!+=1n!(n+n(n1)(n2)3!+n(n1)(n2)(n3)(n4)5!+)=2n1n!(1+x)n=1+nx+n(n1)2!x2+(1x)n=1nx+n(n1)2!x2..(1+x)n(1x)n2=nx+n(n1)(n2)3!x3+2n1=(n+n(n1)(n2)3!+)(x=1)
Commented by Dwaipayan Shikari last updated on 01/Nov/20
(1+x)^n =C_0 +C_1 x+...  ∫_0 ^1 (1+x)^n =∫_0 ^1 C_0 +C_1 x+..  (2^(n+1) /(n+1))=C_0 +(1/2)C_1 +(1/3)C_2 +...(1/(n+1))C_n
(1+x)n=C0+C1x+01(1+x)n=01C0+C1x+..2n+1n+1=C0+12C1+13C2+1n+1Cn
Commented by Dwaipayan Shikari last updated on 01/Nov/20
C_0 +(C_0 +C_1 )+(C_0 +C_1 +C_2 )+...  n(C_0 +C_1 +C_2 +...)−(C_1 +2C_2 +3C_3 +..)  n.2^n −n.2^(n−1) =n2^(n−1) (2−1)=n.2^(n−1)   [(1+x)^n =C_0 +C_1 x+C_3 x^2 +..  n(1+x)^(n−1) =C_1 +2C_3 x+..  n.2^(n−1) =C_1 +2C_3 +...]
C0+(C0+C1)+(C0+C1+C2)+n(C0+C1+C2+)(C1+2C2+3C3+..)n.2nn.2n1=n2n1(21)=n.2n1[(1+x)n=C0+C1x+C3x2+..n(1+x)n1=C1+2C3x+..n.2n1=C1+2C3+]
Commented by Dwaipayan Shikari last updated on 01/Nov/20
(1+x+2x^2 )^(20) =a_0 +a_1 x+...  1^(20) =a_0    (x=0)  (2)^(40) =1+a_1 +a_2 +....   (x=1)  2^(20) =1−a_1 +a_2 −a_3 +....(x=−1)  2^(40) +2^(20) =2(1+a_2 +a_4 +...+a_(38) )  2^(39) +2^(19) =a_0 +a_2 +....  2^(19) (2^(20) +1)=a_0 +a_2 +...+a_(38)
(1+x+2x2)20=a0+a1x+120=a0(x=0)(2)40=1+a1+a2+.(x=1)220=1a1+a2a3+.(x=1)240+220=2(1+a2+a4++a38)239+219=a0+a2+.219(220+1)=a0+a2++a38
Commented by TANMAY PANACEA last updated on 01/Nov/20
thank you
thankyou
Commented by TANMAY PANACEA last updated on 01/Nov/20
i have posted questions collected from[books of IIT
ihavepostedquestionscollectedfrom[booksofIIT
Commented by Dwaipayan Shikari last updated on 01/Nov/20
I am in class 11 (high school) :)
Iaminclass11(highschool):)
Commented by prakash jain last updated on 02/Nov/20
You are doing very well for class XI.  Are you aiming for IIT?
YouaredoingverywellforclassXI.AreyouaimingforIIT?
Commented by Dwaipayan Shikari last updated on 02/Nov/20
I want to study physics in later.  IIT′s are good but i want to study freely
Iwanttostudyphysicsinlater.IITsaregoodbutiwanttostudyfreely
Commented by Dwaipayan Shikari last updated on 02/Nov/20
But in2022 i have  to take this exam :)
Butin2022ihavetotakethisexam:)
Commented by prakash jain last updated on 02/Nov/20
Are u interested in theoritical physics?
Areuinterestedintheoriticalphysics?
Commented by TANMAY PANACEA last updated on 02/Nov/20
17^(1983) +11^(1983) −7^(1983)   answer is =1  explanation  7^1 =last digit 7  7^2 =l.d 9  7^3 =l.d 3  7^4 =1  7^5 =7  cycle of (7 9 1 7)  ((1983)/7)=283+(2/7)→last digit=9  last digit of 7^(1983) →=9  last digit of 11^(1983)  is1  so (9+1−9)→last digit=1  pls chk
171983+11198371983answeris=1explanation71=lastdigit772=l.d973=l.d374=175=7cycleof(7917)19837=283+27lastdigit=9lastdigitof71983→=9lastdigitof111983is1so(9+19)lastdigit=1plschk
Commented by TANMAY PANACEA last updated on 02/Nov/20
32^(32^(32) )  devided by 7  (4×7+5)^(32^(32) )   =f(7)+5^(32^(32) )   now 32^(32) =even number  32^(32)   2^1 →2  2^2 →4  2^3 →8  2^4 →16  2^5 →32  cycle(last digit   2 4 8 6 )  32^(32) =2k is a even number whose last digit 6  5^(2k) =last two digit is 25  so when devided by 7→last digit is 4  pls chk is my thinking correct
323232devidedby7(4×7+5)3232=f(7)+53232now3232=evennumber323221222423824162532cycle(lastdigit2486)3232=2kisaevennumberwhoselastdigit652k=lasttwodigitis25sowhendevidedby7lastdigitis4plschkismythinkingcorrect
Commented by Dwaipayan Shikari last updated on 02/Nov/20
yes , Prakash sir!
yes,Prakashsir!
Commented by Dwaipayan Shikari last updated on 03/Nov/20
(4×7+4)=32^(32^(32) )   typo
(4×7+4)=323232typo
Commented by TANMAY PANACEA last updated on 03/Nov/20
yes yes
yesyes

Leave a Reply

Your email address will not be published. Required fields are marked *