Menu Close

selective-intregals-




Question Number 120628 by TANMAY PANACEA last updated on 01/Nov/20
selective intregals
selectiveintregals
Commented by TANMAY PANACEA last updated on 01/Nov/20
thanks  ∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx
thanksabf(x)dx=abf(a+bx)dx
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by TANMAY PANACEA last updated on 01/Nov/20
Commented by Dwaipayan Shikari last updated on 01/Nov/20
∫^(π/2) _(−(π/2)) (dx/(e^(sinx) +1)).p=I  =∫_(−(π/2)) ^(π/2) (dx/(e^(−sinx) +1))=I  2I=∫_(−(π/2)) ^(π/2) dx  I=(π/2)
π2π2dxesinx+1.p=I=π2π2dxesinx+1=I2I=π2π2dxI=π2
Commented by mathmax by abdo last updated on 01/Nov/20
I =∫_0 ^(π/3) [(√3)tanx]dx   changement (√3)tanx =t give tanx=(t/( (√3))) ⇒x=arctan((t/( (√3))))  I =∫_0 ^3 [t]×(1/( (√3)(1+(t^2 /3))))dt =(√3)∫_0 ^3   (([t])/(t^2  +3))dt=  =(√3){∫_0 ^1 0dt +∫_1 ^2  (1/(t^2 +3))dt +∫_2 ^3  (2/(t^2 +3))dt}  ∫_1 ^2  (dt/(t^2 +3)) =_(t=(√3)u)     ∫_(1/( (√3))) ^(2/( (√3)))     (((√3)du)/(3(1+u^2 ))) =((√3)/3)[arctanu]_(1/( (√3))) ^(2/( (√3)))   =((√3)/3){arctan((2/( (√3))))−arctan((1/( (√3))))}  ∫_2 ^3   ((2dt)/(t^2 +3)) =_(t=(√3)u)     ∫_(2/( (√3))) ^(√3)     ((2(√3)du)/(3(1+u^2 ))) =((2(√3))/3){arctan((√3))−arctan((2/( (√3))))} ⇒  I =arctan((2/( (√3))))−arctan((1/( (√3))))+2 arctan((√3))−2arctan((2/( (√3))))  =−arctan((2/( (√3))))−((π/2)−arctan((√3)))+2arctan((√3))  =3arctan((√3))−(π/2)−arctan((2/( (√3))))  we have arctan((√3))=(π/3) ⇒I =π−(π/2) −arctan((2/( (√3))))  I=(π/2)−arctan((2/( (√3))))(→c)
I=0π3[3tanx]dxchangement3tanx=tgivetanx=t3x=arctan(t3)I=03[t]×13(1+t23)dt=303[t]t2+3dt==3{010dt+121t2+3dt+232t2+3dt}12dtt2+3=t=3u13233du3(1+u2)=33[arctanu]1323=33{arctan(23)arctan(13)}232dtt2+3=t=3u23323du3(1+u2)=233{arctan(3)arctan(23)}I=arctan(23)arctan(13)+2arctan(3)2arctan(23)=arctan(23)(π2arctan(3))+2arctan(3)=3arctan(3)π2arctan(23)wehavearctan(3)=π3I=ππ2arctan(23)I=π2arctan(23)(c)
Commented by mathmax by abdo last updated on 01/Nov/20
A =∫_(−(π/2)) ^(π/2)  (dx/(e^(sinx)  +1))   we do the changement x=−t ⇒  A =−∫_(−(π/2)) ^(π/2)  ((−dt)/(e^(−sint) +1)) =∫_(−(π/2)) ^(π/2)  (dx/(e^(−sinx) +1)) =∫_(−(π/2)) ^(π/2)  (e^(sinx) /(1+e^(sinx) ))dx ⇒  2A =∫_(−(π/2)) ^(π/2) ((1/(1+e^(sinx) ))+(e^(sinx) /(1+e^(sinx) )))dx =∫_(−(π/2)) ^(π/2) dx =π ⇒A =(π/2)
A=π2π2dxesinx+1wedothechangementx=tA=π2π2dtesint+1=π2π2dxesinx+1=π2π2esinx1+esinxdx2A=π2π2(11+esinx+esinx1+esinx)dx=π2π2dx=πA=π2
Commented by mathmax by abdo last updated on 01/Nov/20
lim_(x→1^+ )     ((∫_1 ^x ∣t−1∣dt)/(sin(x−1))) =_(t−1=u)    lim_(x→1^+ )     ((∫_0 ^(x−1) ∣u∣du)/(sin(x−1)))  =lim_(x→1^+ )     ((f^′ (x))/(g^′ (x))) =lim_(x→1^+ )     ((x−1)/((x−1)cos(x−1)))=lim_(x→1^+ )    (1/(cos(x−1)))  =1
limx1+1xt1dtsin(x1)=t1=ulimx1+0x1udusin(x1)=limx1+f(x)g(x)=limx1+x1(x1)cos(x1)=limx1+1cos(x1)=1
Commented by TANMAY PANACEA last updated on 01/Nov/20
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 01/Nov/20
let f(x)=(1/n^3 ){[1^2 x]+[2^2 x]+.....[n^2 x]} =(1/n^3 )Σ_(k=1) ^n [k^2 x] we have  [u]≤u <[u]+1 ⇒u−1 <[u]≤u ⇒k^2 x−1 <[k^2 x]≤k^2 x ⇒  Σ_(k=1) ^n (k^2 x−1)<Σ_(k=1) ^n  [k^2 x]≤Σ_(k=1) ^n  k^2 x ⇒  x Σ_(k=1) ^n  k^2 −n <Σ_(k=1) ^n [k^2 x]≤x Σ_(k=1) ^n  k^2  ⇒  (x/6)n(n+1)(2n+1)−n<Σ_(k=1) ^n [k^2 x]≤((xn(n+1)(2n+1))/6) ⇒  ((xn(n+1)(2n+1))/(6n^3 ))−(1/n^2 )<f(x)≤((xn(n+1)(2n+1))/6)  we have  lim_(n→+∞) (x/(6n^3 ))n(n+1)(2n+1) =xlim_(n→+∞)   ((2n^3 )/(6n^3 )) =(x/3) ⇒  lim_(n→+∞) f(x) =(x/3)
letf(x)=1n3{[12x]+[22x]+..[n2x]}=1n3k=1n[k2x]wehave[u]u<[u]+1u1<[u]uk2x1<[k2x]k2xk=1n(k2x1)<k=1n[k2x]k=1nk2xxk=1nk2n<k=1n[k2x]xk=1nk2x6n(n+1)(2n+1)n<k=1n[k2x]xn(n+1)(2n+1)6xn(n+1)(2n+1)6n31n2<f(x)xn(n+1)(2n+1)6wehavelimn+x6n3n(n+1)(2n+1)=xlimn+2n36n3=x3limn+f(x)=x3
Commented by mathmax by abdo last updated on 01/Nov/20
Q 45 is not clear
Q45isnotclear
Commented by TANMAY PANACEA last updated on 01/Nov/20
great
great
Commented by TANMAY PANACEA last updated on 01/Nov/20
ok sir let me see the source book
oksirletmeseethesourcebook
Commented by Bird last updated on 01/Nov/20
you are welcome
youarewelcome
Commented by bobhans last updated on 01/Nov/20
(42) lim_(x→1)  ((∫_1 ^x  ∣t−1∣ dt)/(sin (x−1))) = lim_(x→1)  ((∣x−1∣)/(cos (x−1))) = 0
(42)limx1x1t1dtsin(x1)=limx1x1cos(x1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *