Menu Close

show-by-recurrence-that-n-1-a-n-b-n-a-b-a-n-1-a-n-2-b-ab-n-2-b-n-1-




Question Number 121014 by mathocean1 last updated on 04/Nov/20
show by recurrence that  ∀ n≥1 ,  a^n −b^n =(a−b)(a^(n−1) +a^(n−2) ∗b+...+ab^(n−2) +b^(n−1) )
showbyrecurrencethatn1,anbn=(ab)(an1+an2b++abn2+bn1)
Answered by mathmax by abdo last updated on 04/Nov/20
let prove by recurence that x^n −1 =(x−1)(x^(n−1) +x^(n−2) +...+x +1)  for x real n natural >0  n=1  we get x^1 −1 =(x−1)(1)  (relation true)  let suppose P_n  true  x^(n+1) −1 =x x^n −1 =x(x^n −1+1)−1  =x(x^n −1)+x−1 =x(x−1)(x^(n−1) +x^(n−2) +...+x+1)+x−1  =(x−1)(x^n  +x^(n−1) +...+x^2  +x+1) so  P_(n+1)  is true   for x =(a/b) and b≠0  we get  ((a/b))^n −1 =((a/b)−1)((a^(n−1) /b^(n−1) )+(a^(n−2) /b^(n−2) )+.....+(a/b)+1) ⇒  ((a^n −b^n )/b^n )=(((a−b)/b))((a^(n−1) /b^(n−1) )+(a^(n−2) /b^(n−2) )+....+(a/b)+1) ⇒  a^n −b^n  =(a−b)b^(n−1) ((a^(n−1) /b^(n−1) )+(a^(n−2) /b^(n−2) )+....+(a/b)+1) ⇒  a^n −b^n  =(a−b)(a^(n−1)  +a^(n−2) b+.....ab^(n−2)  +b^(n−1) )
letprovebyrecurencethatxn1=(x1)(xn1+xn2++x+1)forxrealnnatural>0n=1wegetx11=(x1)(1)(relationtrue)letsupposePntruexn+11=xxn1=x(xn1+1)1=x(xn1)+x1=x(x1)(xn1+xn2++x+1)+x1=(x1)(xn+xn1++x2+x+1)soPn+1istrueforx=abandb0weget(ab)n1=(ab1)(an1bn1+an2bn2+..+ab+1)anbnbn=(abb)(an1bn1+an2bn2+.+ab+1)anbn=(ab)bn1(an1bn1+an2bn2+.+ab+1)anbn=(ab)(an1+an2b+..abn2+bn1)

Leave a Reply

Your email address will not be published. Required fields are marked *