Menu Close

Show-by-recurrence-that-n-N-k-0-n-1-q-k-q-n-1-q-1-




Question Number 123175 by mathocean1 last updated on 23/Nov/20
Show by recurrence that  ∀ n ∈ N, Σ_(k=0 ) ^(n−1) q^k =((q^n −1)/(q−1))
ShowbyrecurrencethatnN,k=0n1qk=qn1q1
Answered by PNL last updated on 24/Nov/20
for n=1  Σ_(k=0) ^0 q^k =q^0 =((q^1 −1)/(q−1))=1 , so it′s true for n=1    for n>1, n∈N, let′s suppose this property true and  let′s prouve it for n+1    we have for n+1 :  Σ_(k=0) ^n q^k =Σ_(k=0) ^(n−1) q^k + q^n =((q^n −1)/(q−1))+ q^n =((q^n −1+q^(n+1) −q^n )/(q−1))=((q^(n+1) −1)/(q−1))   so it′s true for n+1    therefore Σ_(k=0) ^(n−1) q^k =((q^k −1)/(q−1))  for n∈N
forn=10k=0qk=q0=q11q1=1,soitstrueforn=1forn>1,nN,letssupposethispropertytrueandletsprouveitforn+1wehaveforn+1:nk=0qk=n1k=0qk+qn=qn1q1+qn=qn1+qn+1qnq1=qn+11q1soitstrueforn+1thereforen1k=0qk=qk1q1fornN

Leave a Reply

Your email address will not be published. Required fields are marked *