Menu Close

Show-for-z-1-z-2-C-that-z-1-z-2-2-z-1-z-2-2-2-z-1-2-z-2-2-




Question Number 164473 by mathocean1 last updated on 17/Jan/22
Show for z_1 ; z_(2 )  ∈ C that:  ∣z_1 +z_2 ∣^2 +∣z_1 −z_2 ∣^2 =2(∣z_1 ∣^2 +∣z_2 ∣^2 ).
$${Show}\:{for}\:{z}_{\mathrm{1}} ;\:{z}_{\mathrm{2}\:} \:\in\:\mathbb{C}\:{that}: \\ $$$$\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\mathrm{2}\left(\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \right). \\ $$
Answered by puissant last updated on 19/Jan/22
∣z_1 +z_2 ∣^2 +∣z_1 −z_2 ∣^2 = ∣z_1 ∣^2 +2∣z_1 ∣∣z_2 ∣+∣z_2 ∣^2 +∣z_1 ∣^2 −2∣z_1 ∣∣z_2 ∣+∣z_2 ∣^2                                         = 2(∣z_1 ∣^2 +∣z_2 ∣^2 )
$$\mid{z}_{\mathrm{1}} +{z}_{\mathrm{2}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{1}} −{z}_{\mathrm{2}} \mid^{\mathrm{2}} =\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +\mathrm{2}\mid{z}_{\mathrm{1}} \mid\mid{z}_{\mathrm{2}} \mid+\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} −\mathrm{2}\mid{z}_{\mathrm{1}} \mid\mid{z}_{\mathrm{2}} \mid+\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2}\left(\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} +\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \right) \\ $$
Commented by mathocean1 last updated on 19/Jan/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *