Menu Close

show-proofs-by-induction-that-x-1-x-2-x-n-n-x-1-x-2-x-n-1-n-n-2-k-k-gt-1-and-x-1-x-2-x-3-x-n-gt-0-




Question Number 86672 by M±th+et£s last updated on 30/Mar/20
show proofs by induction,that  ((x_1 +x_2 +....+x_n )/n)≥(x_1 x_2 ....x_n )^(1/n)   ∀n=2^k ,k>1 and (x_1 ,x_2 ,x_3 ,.....x_n )>0.
$${show}\:{proofs}\:{by}\:{induction},{that} \\ $$$$\frac{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +….+{x}_{{n}} }{{n}}\geqslant\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} ….{x}_{{n}} \right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\forall{n}=\mathrm{2}^{{k}} ,{k}>\mathrm{1}\:{and}\:\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{x}_{\mathrm{3}} ,…..{x}_{{n}} \right)>\mathrm{0}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *