Question Number 84680 by M±th+et£s last updated on 15/Mar/20
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({xyz}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}\:{dx}\:{dy}\:{dz}=\frac{−\mathrm{3}\pi^{\mathrm{2}} {G}}{\mathrm{16}} \\ $$
Answered by mind is power last updated on 15/Mar/20
$$=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)+{ln}\left({y}\right)+{ln}\left({z}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}{dxdydz} \\ $$$${by}\:{Symetrie} \\ $$$$=\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}{dxdydz} \\ $$$$=\mathrm{3}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dydz}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$−{G}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\Rightarrow \\ $$$$=−\mathrm{3}{G}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dydz}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)}=−\mathrm{3}{G}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dy}}{\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dz}}{\mathrm{1}+{z}^{\mathrm{2}} } \\ $$$$=−\mathrm{3}{G}.\left(\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} =\frac{−\mathrm{3}\pi^{\mathrm{2}} {G}}{\mathrm{16}} \\ $$
Commented by M±th+et£s last updated on 15/Mar/20
$${thank}\:{you}\:{so}\:{much}\:{sir}\: \\ $$