Menu Close

Show-that-0-1-0-1-x-y-x-y-2-dy-dx-0-1-0-1-x-y-x-y-2-dx-dy-




Question Number 89311 by nimnim last updated on 16/Apr/20
  Show that  ∫_(   0) ^(       1) {∫_(    0) ^(   1) ((x−y)/((x+y)^2 ))dy}dx=∫_(  0) ^(       1) {∫_(   0) ^(      1) ((x−y)/((x+y)^2 ))dx}dy
$$\:\:{Show}\:{that} \\ $$$$\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\left\{\underset{\:\:\:\:\mathrm{0}} {\overset{\:\:\:\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{2}} }{dy}\right\}{dx}=\underset{\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\:\mathrm{1}} {\int}}\left\{\underset{\:\:\:\mathrm{0}} {\overset{\:\:\:\:\:\:\mathrm{1}} {\int}}\frac{{x}−{y}}{\left({x}+{y}\right)^{\mathrm{2}} }{dx}\right\}{dy} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *