Menu Close

Show-that-0-1-1-x-2-1-x-2-dx-pi-4-1-4-3-4-4-3-4-1-4-where-Gamma-function-




Question Number 161818 by HongKing last updated on 22/Dec/21
Show that:  Φ =∫_( 0) ^( 1) (√((1 - x^2 )/(1 + x^2 ))) dx = ((√π)/4) (((Γ((1/4)))/(Γ((3/4)))) - 4 ((Γ((3/4)))/(Γ((1/4)))))  where: Γ-Gamma function
Showthat:Φ=101x21+x2dx=π4(Γ(14)Γ(34)4Γ(34)Γ(14))where:ΓGammafunction
Answered by Lordose last updated on 22/Dec/21
Φ = ∫_0 ^( 1) (√((1−x^2 )/(1+x^2 )))dx = ∫_0 ^( 1) ((1−x^2 )/( (√(1−x^4 ))))dx  Φ =^(x=u^(1/4) ) (1/4)∫_0 ^( 1) ((u^((1/4)−1) −u^((1/2)+(1/4)−1) )/( (√(1−u))))du  Φ = (1/4)(∫_0 ^( 1) u^((1/4)−1) (1−u)^((1/2)−1)  − ∫_0 ^( 1) u^((3/4)−1) (1−u)^((1/2)−1) du)  Φ = (1/4)(((𝚪((1/4))𝚪((1/2)))/(𝚪((3/4)))) − ((𝚪((3/4))𝚪((1/2)))/(𝚪((5/4)))))  𝚪(1+x) = x𝚪(x)  Φ = ((√𝛑)/4)(((𝚪((1/4)))/(𝚪((3/4)))) − 4((𝚪((3/4)))/(𝚪((1/4)))))
Φ=011x21+x2dx=011x21x4dxΦ=x=u141401u141u12+1411uduΦ=14(01u141(1u)12101u341(1u)121du)Φ=14(Γ(14)Γ(12)Γ(34)Γ(34)Γ(12)Γ(54))Γ(1+x)=xΓ(x)Φ=π4(Γ(14)Γ(34)4Γ(34)Γ(14))

Leave a Reply

Your email address will not be published. Required fields are marked *