Question Number 84956 by M±th+et£s last updated on 17/Mar/20
$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} {cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+\mathrm{1}}\:{dx}=\frac{\pi}{\mathrm{2}\phi} \\ $$
Commented by mathmax by abdo last updated on 18/Mar/20
$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right){x}^{\mathrm{2}} \:+\mathrm{1}}\:{let}\:{W}\left({z}\right)=\frac{\mathrm{1}}{{z}^{\mathrm{4}} \:+\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right){z}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{4}} \:+\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right){z}^{\mathrm{2}} \:+\mathrm{1}=\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} +\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right){t}+\mathrm{1}=\mathrm{0}\:\:\left({t}={z}^{\mathrm{2}} \right) \\ $$$$\Delta^{'} ={cos}^{\mathrm{2}} \left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)−\mathrm{1}\:=\left({isin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)\right)^{\mathrm{2}} \:\Rightarrow{t}_{\mathrm{1}} =−{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)+{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right) \\ $$$$={e}^{{i}\left(\pi−\frac{\mathrm{2}\pi}{\mathrm{5}}\right)} \:={e}^{{i}\left(\frac{\mathrm{3}\pi}{\mathrm{5}}\right)} \:\:\:{t}_{\mathrm{2}} ={e}^{{i}\left(\pi+\frac{\mathrm{2}\pi}{\mathrm{5}}\right)} ={e}^{{i}\left(\frac{\mathrm{7}\pi}{\mathrm{5}}\right)} \:\Rightarrow{W}\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} −{e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{5}}} \right)\left({z}^{\mathrm{2}} −{e}^{{i}\left(\frac{\mathrm{7}\pi}{\mathrm{5}}\right)} \right)} \\ $$$$=\frac{\mathrm{1}}{\left({z}−{e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{10}}} \right)\left({z}+{e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{10}}} \right)\left({z}−{e}^{{i}\left(\frac{\mathrm{7}\pi}{\mathrm{10}}\right)} \right)\left({z}+{e}^{\frac{{i}\mathrm{7}\pi}{\mathrm{10}}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{{Res}\left({W},{e}^{\frac{{i}\mathrm{3}\pi}{\mathrm{10}}} \right)+{Res}\left({W},{e}^{{i}\frac{\mathrm{7}\pi}{\mathrm{10}}} \right)\right\}…{be}\:{continued}… \\ $$
Commented by M±th+et£s last updated on 18/Mar/20
$${thank}\:{you}\:{sir} \\ $$
Commented by mathmax by abdo last updated on 18/Mar/20
$${you}\:{are}\:{welcome} \\ $$
Answered by mind is power last updated on 18/Mar/20
$$\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} −{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{5}}} \right)\left({x}^{\mathrm{2}} −{e}^{\frac{\mathrm{8}{i}\pi}{\mathrm{5}}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{{dz}}{\left({z}^{\mathrm{2}} −{e}^{\frac{\mathrm{2}{i}\pi}{\mathrm{5}}} \right)\left({z}^{\mathrm{2}} −{e}^{\frac{\mathrm{8}{i}\pi}{\mathrm{5}}} \right)} \\ $$$$={i}\pi.\left\{\frac{\mathrm{1}}{\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{5}}} \left({e}^{\frac{\mathrm{2}{i}\pi}{\mathrm{5}}} −{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{5}}} \right)}+\frac{\mathrm{1}}{\left({e}^{{i}\frac{\mathrm{8}\pi}{\mathrm{5}}} −{e}^{\frac{\mathrm{2}{i}\pi}{\mathrm{5}}} \right).\mathrm{2}{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{5}}} }\right\} \\ $$$$={i}\pi.\left(\frac{{e}^{−\frac{{i}\pi}{\mathrm{5}}} }{\mathrm{4}{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)}−\frac{{e}^{−\frac{\mathrm{4}{i}\pi}{\mathrm{5}}} }{\mathrm{4}{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)}\right) \\ $$$$=\frac{\pi}{\mathrm{4}{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right)}\left(\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{5}}\right)\right)=\frac{\pi}{\mathrm{4}{sin}\left(\frac{\pi}{\mathrm{5}}\right)}=\frac{\pi}{\mathrm{2}\emptyset} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 18/Mar/20
$${god}\:{bless}\:{you}\:{sir} \\ $$