Menu Close

Show-that-0-2pi-cos-3x-5-4cos-x-dx-pi-12-




Question Number 27464 by tawa tawa last updated on 07/Jan/18
Show that:    ∫_( 0) ^( 2π)  ((cos(3x))/(5 − 4cos(x))) dx  =  (π/(12))
Showthat:02πcos(3x)54cos(x)dx=π12
Commented by abdo imad last updated on 07/Jan/18
let put I= ∫_0 ^(2π)  ((cos(3x))/(5−4cosx))dx and use the ch. e^(ix)  =z  I= ∫_(/z/=1)  (((z^3 +z^(−3) )/2)/(5−4((z+z^(−1) )/2))) (dz/(iz))= (1/2)∫_(/z/=1) ((z^3 +z^(−3) )/(iz(5−2z −2z^(−1) )))dz  2I= ∫_(/z/=1) ((−i( z^3 +z^(−3) ))/(5z −2z^2 −2))dz = ∫_(/z/=1) ((i( z^3 +z^(−3) ))/(2z^2 −5z +2))dz let consider    the complex function f(z) = ((i( z^3  +z^(−3) ))/(2z^2 −5z +2))  poles of f?  2z^2 −5z +2=0  Δ=25−16=9  z_1 =((5−3)/4)= (1/2)  and z_2 =((5+3)/4)=2  and f(z)=  ((i(z^3 +z^(−3) ))/(2(z−(1/2))(z−2)))  we see that /z_(2/>1)  so  ∫_(/z/=1 ) f(z)dz=2iπ Res(f,(1/2))  Res(f,(1/2))= lim_(z−>(1/2)) ^ (z−(1/2))f(z)= ((i( (1/8)+8))/(2(−(3/2))))=((i((65)/8))/(−3))  =−i((65)/(24)) ⇒  ∫_(/z/=1) f(z)dz=2iπ(−i ((65)/(24)))= ((65π)/(12))  I=((65π)/(24)).
letputI=02πcos(3x)54cosxdxandusethech.eix=zI=/z/=1z3+z3254z+z12dziz=12/z/=1z3+z3iz(52z2z1)dz2I=/z/=1i(z3+z3)5z2z22dz=/z/=1i(z3+z3)2z25z+2dzletconsiderthecomplexfunctionf(z)=i(z3+z3)2z25z+2polesoff?2z25z+2=0Δ=2516=9z1=534=12andz2=5+34=2andf(z)=i(z3+z3)2(z12)(z2)weseethat/z2/>1so/z/=1f(z)dz=2iπRes(f,12)Res(f,12)=limz>12(z12)f(z)=i(18+8)2(32)=i6583=i6524/z/=1f(z)dz=2iπ(i6524)=65π12I=65π24.
Commented by abdo imad last updated on 07/Jan/18
 think there is a mistake in the exercise???
thinkthereisamistakeintheexercise???
Commented by tawa tawa last updated on 07/Jan/18
God bless you sir. But the answer is  (π/(12))
Godblessyousir.Buttheanswerisπ12
Commented by abdo imad last updated on 07/Jan/18
i will try another method for verifying...thanks
iwilltryanothermethodforverifyingthanks
Commented by tawa tawa last updated on 07/Jan/18
I really appreciate sir. God bless you
Ireallyappreciatesir.Godblessyou

Leave a Reply

Your email address will not be published. Required fields are marked *