show-that-0-e-x-ln-x-x-dx-pi-ln-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 85721 by M±th+et£s last updated on 24/Mar/20 showthat∫0∞e−xln(x)xdx=−π(γ+ln(4)) Answered by mind is power last updated on 24/Mar/20 ∫0+∞e−xln(x)xdxx=u⇒∫0+∞4e−u2ln(u)du=4∫0+∞e−u2ln(u)du∫0+∞tx−1e−tdt=Γ(x)t=u2⇒dt=2udu2∫0+∞u2x−1e−u2=Γ(x)⇒Γ′(x)=2∫2ln(u)u2x−1e−u2du=Γ′(x)⇒4∫0+∞ln(u)e−u2du=Γ′(12)=Ψ(12)Γ(12)Ψ(12)=−γ−ln(2.2)=−γ−ln(4)Γ(12)=π⇒∫0+∞e−xln(x)xdx=4∫0+∞ln(u)e−u2du=π(−γ−ln(4))=−π(γ+ln(4)) Commented by M±th+et£s last updated on 24/Mar/20 godblessyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sin-x-cos-3x-sin-x-cos-2x-dx-Next Next post: t-1-3-t-n-3t-n-1-2-n-gt-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.