Menu Close

show-that-0-e-x-ln-x-x-dx-pi-ln-4-




Question Number 85721 by M±th+et£s last updated on 24/Mar/20
show that  ∫_0 ^∞ ((e^(−x) ln(x))/( (√x)))dx=−(√π)(γ+ln(4))
showthat0exln(x)xdx=π(γ+ln(4))
Answered by mind is power last updated on 24/Mar/20
∫_0 ^(+∞) ((e^(−x) ln(x))/( (√x)))dx  (√x)=u  ⇒∫_0 ^(+∞) 4e^(−u^2 ) ln(u)du=4∫_0 ^(+∞) e^(−u^2 ) ln(u)du  ∫_0 ^(+∞) t^(x−1) e^(−t) dt=Γ(x)  t=u^2 ⇒dt=2udu  2∫_0 ^(+∞) u^(2x−1) e^(−u^2 ) =Γ(x)⇒Γ′(x)=2∫2ln(u)u^(2x−1) e^(−u^2 ) du=Γ′(x)  ⇒4∫_0 ^(+∞) ln(u)e^(−u^2 ) du=Γ′((1/2))=Ψ((1/2))Γ((1/2))  Ψ((1/2))=−γ−ln(2.2)=−γ−ln(4)  Γ((1/2))=(√π)⇒  ∫_0 ^(+∞) ((e^(−x) ln(x))/( (√x)))dx=4∫_0 ^(+∞) ln(u)e^(−u^2 ) du=(√π)(−γ−ln(4))=−(√π)(γ+ln(4))
0+exln(x)xdxx=u0+4eu2ln(u)du=40+eu2ln(u)du0+tx1etdt=Γ(x)t=u2dt=2udu20+u2x1eu2=Γ(x)Γ(x)=22ln(u)u2x1eu2du=Γ(x)40+ln(u)eu2du=Γ(12)=Ψ(12)Γ(12)Ψ(12)=γln(2.2)=γln(4)Γ(12)=π0+exln(x)xdx=40+ln(u)eu2du=π(γln(4))=π(γ+ln(4))
Commented by M±th+et£s last updated on 24/Mar/20
god bless you sir
godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *