Menu Close

show-that-0-pi-2-cos-x-cos-x-sin-x-1-dx-1-4-pi-2ln-2-




Question Number 151220 by peter frank last updated on 19/Aug/21
show that   ∫_0 ^(π/2) ((cos x)/(cos x+sin x+1))dx=(1/4)(π−2ln 2)
showthat0π2cosxcosx+sinx+1dx=14(π2ln2)
Answered by ArielVyny last updated on 19/Aug/21
t=tan((x/2))→dt=(1/2)(1+t^2 )dx  ∫_0 ^1 (((1−t^2 )/(1+t^2 ))/(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))+1))×(2/(1+t^2 ))dt=2∫_0 ^1 (((1−t^2 )/(1+t^2 ))/((1−t^2 )+(2t)+(1+t^2 )))dt  =2∫_0 ^1 ((1−t^2 )/(1+t^2 ))×(1/(2+2t))dt=∫_0 ^1 (((1−t))/((1+t^2 ))) dt=∫_0 ^1 (1/(1+t^2 ))dt−∫_0 ^1 (t/(1+t^2 ))dt  =∫_0 ^1 (1/(1+t^2 ))dt−∫_0 ^1 (t/(1+t^2 ))dt=(π/4)−Σ(−1)^n ∫_0 ^1 t^(2n+1)   (π/4)−Σ(−1)^n (1/(2n+2))=(π/4)−(1/2)ln(2)  ∫_0 ^(π/2) ((cosx)/(cosx+sinx+1))=(π/4)−(1/2)ln(2+
t=tan(x2)dt=12(1+t2)dx011t21+t21t21+t2+2t1+t2+1×21+t2dt=2011t21+t2(1t2)+(2t)+(1+t2)dt=2011t21+t2×12+2tdt=01(1t)(1+t2)dt=0111+t2dt01t1+t2dt=0111+t2dt01t1+t2dt=π4Σ(1)n01t2n+1π4Σ(1)n12n+2=π412ln(2)0π2cosxcosx+sinx+1=π412ln(2+
Commented by peter frank last updated on 19/Aug/21
thank you
thankyou
Answered by Lordose last updated on 19/Aug/21
  Ω = ∫_0 ^(𝛑/2) ((cos(x))/(cos(x)+sin(x)+1))dx =^(t=tan((x/2))) ∫_0 ^( 1) (((1−t^2 )/(1+t^2 ))/((1+t^2 )(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))+1)))dt  Ω = 2∫_0 ^( 1) (((1−t^2 ))/((1+t^2 )(1−t^2 +2t+1+t^2 ))) = ∫_0 ^( 1) ((1−t)/(1+t^2 ))dt  Ω = ∫_0 ^( 1) (1/(1+t^2 ))dt − (1/2)∫_0 ^( 1) ((2t)/(1+t^2 ))dt  𝛀 = (𝛑/4) − (1/2)ln(2)
Ω=0π2cos(x)cos(x)+sin(x)+1dx=t=tan(x2)011t21+t2(1+t2)(1t21+t2+2t1+t2+1)dtΩ=201(1t2)(1+t2)(1t2+2t+1+t2)=011t1+t2dtΩ=0111+t2dt12012t1+t2dtΩ=π412ln(2)
Commented by peter frank last updated on 19/Aug/21
thank you
thankyou
Answered by Lordose last updated on 19/Aug/21
  Ω = ∫_0 ^(𝛑/2) ((cos(x))/(cos(x)+sin(x)+1))dx =^(t=tan((x/2))) ∫_0 ^( 1) (((1−t^2 )/(1+t^2 ))/((1+t^2 )(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 ))+1)))dt  Ω = 2∫_0 ^( 1) (((1−t^2 ))/((1+t^2 )(1−t^2 +2t+1+t^2 ))) = ∫_0 ^( 1) ((1−t)/(1+t^2 ))dt  Ω = ∫_0 ^( 1) (1/(1+t^2 ))dt − (1/2)∫_0 ^( 1) ((2t)/(1+t^2 ))dt  𝛀 = (𝛑/4) − (1/2)ln(2)
Ω=0π2cos(x)cos(x)+sin(x)+1dx=t=tan(x2)011t21+t2(1+t2)(1t21+t2+2t1+t2+1)dtΩ=201(1t2)(1+t2)(1t2+2t+1+t2)=011t1+t2dtΩ=0111+t2dt12012t1+t2dtΩ=π412ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *