Question Number 89593 by M±th+et£s last updated on 19/Apr/20
$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sec}\left({x}\right)\right)\:{ln}\left({csc}\left({x}\right)\right)\:{dx}=\frac{\pi^{\mathrm{2}} \:{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\pi^{\mathrm{4}} }{\mathrm{48}} \\ $$
Commented by maths mind last updated on 19/Apr/20
$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){ln}\left({cos}\left({x}\right)\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\partial_{{a}} \partial_{{b}} \mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{a}} \left({x}\right){cos}^{{b}} \left({x}\right){dx}\mid_{\left({a},{b}\right)=\left(\mathrm{0},\mathrm{0}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\partial_{{a}} \partial_{{b}} \beta\left(\frac{{a}+\mathrm{1}}{\mathrm{2}},\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)_{\left({a},{b}\right)=\left(\mathrm{0},\mathrm{0}\right)} \\ $$$$\partial_{{x}} \beta\left({x},{y}\right)=\beta\left({x},{y}\right)\left(\psi\left({x}\right)−\psi\left({x}+{y}\right)\right) \\ $$$$\partial_{{a}} \partial_{{b}} \beta\left(\frac{{a}+\mathrm{1}}{\mathrm{2}},\frac{{b}+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\partial_{{a}} \beta\left(\frac{{a}+\mathrm{1}}{\mathrm{2}},\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)\left(\Psi\left(\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{a}+{b}}{\mathrm{2}}+\mathrm{1}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\beta\left(\frac{{a}+\mathrm{1}}{\mathrm{2}},\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)\left(\Psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{a}+{b}}{\mathrm{2}}+\mathrm{1}\right)\right)\left(\Psi\left(\frac{{b}+\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\frac{{a}+{b}}{\mathrm{2}}+\mathrm{1}\right)\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{4}}\Psi'\left(\frac{{a}+{b}}{\mathrm{2}}+\mathrm{1}\right)\beta\left(\frac{{a}+\mathrm{1}}{\mathrm{2}},\frac{{b}+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\left({a}={b}=\mathrm{0}\right) \\ $$$$=\frac{\beta\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{4}}\left(\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}\right)^{\mathrm{2}} −\Psi'\left(\mathrm{1}\right)\right) \\ $$$$=\frac{\pi}{\mathrm{8}}\left(\mathrm{4}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right)=\frac{\pi{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\pi^{\mathrm{3}} }{\mathrm{48}} \\ $$
Commented by M±th+et£s last updated on 19/Apr/20
$${thank}\:{you}\:{verry}\:{much}\:{its}\:{great}\:{solution} \\ $$
Commented by maths mind last updated on 19/Apr/20
$${withe}\:\:{pleasur}\:{i}\:{lost}\:{my}\:{count} \\ $$$${mind}\:{is}\:{power}!! \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 19/Apr/20
$${i}\:{am}\:{sorry}\:{this}\:{happened}\:{to}\:{you} \\ $$$${and}\:{i}\:{am}\:\:{verry}\:{happy}\:{to}\:{see}\:{you}\:{again} \\ $$$${in}\:{the}\:{forum} \\ $$
Commented by M±th+et£s last updated on 20/Apr/20
$${sir}\:{i}\:{can}\:{put}\:{all}\:{of}\:{your}\:{solutions}\:{on}\:{my} \\ $$$${questions}\:{here}\:{in}\:{this}\:{post}\:{if}\:{you}\:{want} \\ $$$${that}? \\ $$