Question Number 83064 by M±th+et£s last updated on 27/Feb/20

Answered by mind is power last updated on 27/Feb/20
![∫_0 ^(π/2) ((sin(2kx+x))/(sin(x)))=∫_0 ^(π/2) {((sin(2kx)cos(x))/(sin(x)))+cos(2kx)}dx k=0 evidente Σ_(k=0) ^(n −1) e^(ikx) =((1−(e^(inx) ))/(1−e^(ix) ))=((e^(i(((n−1)/2))x) sin((n/2)x))/(sin((x/2)))) ⇒Σ_(k=0) ^(n−1) e^(i2kx) =((e^(i(n−1)x) sin(nx))/(sin(x))) ⇒Σ_(k=0) ^(n−1) e^(i(2k−n+1)x) =((sin(nx))/(sin(x))) n=2m+1 ⇒∫_0 ^(π/2) Σ_(k=0) ^(2m) e^(i(2k−2m)x) dx=∫_0 ^(π/2) ((sin((2m+1)x))/(sin(x)))dx m>0⇒ ∫_0 ^(π/2) Σ_(k=0) ^(m−1) e^(i(2k−2m)x) dx+∫_0 ^(π/2) e^(i.(2m−2m)x) dx+∫_0 ^(π/2) Σ_(k=m+1) ^(2m) e^(i(2k−2m)x) dx =Σ_(k=0) ^(m−1) ∫_0 ^(π/2) e^(i(2k−2m)x) dx =Σ_(k=0) ^(m−1) [(e^(i(2k−2m)x) /(i(2k−2m)))]_0 ^(π/2) +∫_0 ^(π/2) dx+Σ_(m+1) ^(2m) [(e^(i(2k−2m)x) /(2k−2m))]_0 ^(π/2) =Σ_(k=0) ^(m−1) (((−1)^(k−m) −1)/(i2(k−m))) +(π/2)+Σ_(m+1) ^(2m) [(((−1)^(k−m) −1)/(i2(k−m)))] Σ_(m+1) ^(2m) [(((−1)^(k−m) −1)/(2i(k−m)))]=Σ_0 ^(m−1) [(((−1)^(2m−k−m) −1)/(2i(2m−k−m)))] =Σ_(k=0) ^(m−1) [(((−1)^(k−m) −1)/(2i(m−k)))]=−Σ_(k=0) ^(m−1) [(((−1)^(k−m) −1)/(2i(k−m)))] ⇒Σ_(m+1) ^(2m) [(((−1)^(k−m) −1)/(2i(k−m)))]+Σ_(k=0) ^(m−1) [(((−1)^(k−m) −1)/(2i(k−m)))]=0 ⇒Σ_(k=0) ^(m−1) ∫_0 ^(π/2) e^(i2(k−m)x) dx=(π/2)=∫_0 ^(π/2) ((sin(nx))/(sin(x)))dx](https://www.tinkutara.com/question/Q83069.png)
Commented by M±th+et£s last updated on 27/Feb/20

Commented by mind is power last updated on 27/Feb/20

Answered by TANMAY PANACEA last updated on 28/Feb/20

Commented by M±th+et£s last updated on 28/Feb/20

Commented by TANMAY PANACEA last updated on 28/Feb/20
