Menu Close

show-that-0-pi-2-sin-nx-sin-x-dx-pi-2-n-is-posative-odd-number-




Question Number 83064 by M±th+et£s last updated on 27/Feb/20
show that  ∫_0 ^(π/2)  ((sin(nx))/(sin(x)))dx=(π/2)  n is posative odd number
showthat0π2sin(nx)sin(x)dx=π2nisposativeoddnumber
Answered by mind is power last updated on 27/Feb/20
∫_0 ^(π/2) ((sin(2kx+x))/(sin(x)))=∫_0 ^(π/2) {((sin(2kx)cos(x))/(sin(x)))+cos(2kx)}dx  k=0  evidente  Σ_(k=0) ^(n −1) e^(ikx) =((1−(e^(inx) ))/(1−e^(ix) ))=((e^(i(((n−1)/2))x) sin((n/2)x))/(sin((x/2))))  ⇒Σ_(k=0) ^(n−1) e^(i2kx) =((e^(i(n−1)x) sin(nx))/(sin(x)))  ⇒Σ_(k=0) ^(n−1) e^(i(2k−n+1)x) =((sin(nx))/(sin(x)))  n=2m+1  ⇒∫_0 ^(π/2) Σ_(k=0) ^(2m) e^(i(2k−2m)x) dx=∫_0 ^(π/2) ((sin((2m+1)x))/(sin(x)))dx  m>0⇒  ∫_0 ^(π/2) Σ_(k=0) ^(m−1) e^(i(2k−2m)x) dx+∫_0 ^(π/2) e^(i.(2m−2m)x) dx+∫_0 ^(π/2) Σ_(k=m+1) ^(2m) e^(i(2k−2m)x) dx  =Σ_(k=0) ^(m−1) ∫_0 ^(π/2) e^(i(2k−2m)x) dx  =Σ_(k=0) ^(m−1) [(e^(i(2k−2m)x) /(i(2k−2m)))]_0 ^(π/2) +∫_0 ^(π/2) dx+Σ_(m+1) ^(2m) [(e^(i(2k−2m)x) /(2k−2m))]_0 ^(π/2)   =Σ_(k=0) ^(m−1) (((−1)^(k−m) −1)/(i2(k−m)))   +(π/2)+Σ_(m+1) ^(2m) [(((−1)^(k−m) −1)/(i2(k−m)))]  Σ_(m+1) ^(2m) [(((−1)^(k−m) −1)/(2i(k−m)))]=Σ_0 ^(m−1) [(((−1)^(2m−k−m) −1)/(2i(2m−k−m)))]  =Σ_(k=0) ^(m−1) [(((−1)^(k−m) −1)/(2i(m−k)))]=−Σ_(k=0) ^(m−1) [(((−1)^(k−m) −1)/(2i(k−m)))]  ⇒Σ_(m+1) ^(2m) [(((−1)^(k−m) −1)/(2i(k−m)))]+Σ_(k=0) ^(m−1) [(((−1)^(k−m) −1)/(2i(k−m)))]=0  ⇒Σ_(k=0) ^(m−1) ∫_0 ^(π/2) e^(i2(k−m)x) dx=(π/2)=∫_0 ^(π/2) ((sin(nx))/(sin(x)))dx
0π2sin(2kx+x)sin(x)=0π2{sin(2kx)cos(x)sin(x)+cos(2kx)}dxk=0evidenten1k=0eikx=1(einx)1eix=ei(n12)xsin(n2x)sin(x2)n1k=0ei2kx=ei(n1)xsin(nx)sin(x)n1k=0ei(2kn+1)x=sin(nx)sin(x)n=2m+10π22mk=0ei(2k2m)xdx=0π2sin((2m+1)x)sin(x)dxm>00π2m1k=0ei(2k2m)xdx+0π2ei.(2m2m)xdx+0π22mk=m+1ei(2k2m)xdx=m1k=00π2ei(2k2m)xdx=m1k=0[ei(2k2m)xi(2k2m)]0π2+0π2dx+2mm+1[ei(2k2m)x2k2m]0π2=m1k=0(1)km1i2(km)+π2+2mm+1[(1)km1i2(km)]2mm+1[(1)km12i(km)]=m10[(1)2mkm12i(2mkm)]=m1k=0[(1)km12i(mk)]=m1k=0[(1)km12i(km)]2mm+1[(1)km12i(km)]+m1k=0[(1)km12i(km)]=0m1k=00π2ei2(km)xdx=π2=0π2sin(nx)sin(x)dx
Commented by M±th+et£s last updated on 27/Feb/20
god bless you
godblessyou
Commented by mind is power last updated on 27/Feb/20
withe pleasur god bless  evrey one
withepleasurgodblessevreyone
Answered by TANMAY PANACEA last updated on 28/Feb/20
I_n −I_(n−2) =∫_0 ^(π/2) ((sinnx−sin(n−2)x)/(sinx))dx  =∫_0 ^(π/2) ((2cos(n−1)xsinx)/(sinx))dx  I_n −I_(n−2) =2∣((sin(n−1)x)/(n−1))∣_0 ^(π/2) =(2/(n−1))sin(n−1)(π/2)=0  ★ when n=odd   then n−1=even  so sin(n−1)(π/2)=sin(2k×(π/2))=0★  I_n =I_(n−2)    I_3 =I_1   I_5 =I_3   so I_1 =I_3 =I_5 =I_7 ....  I_1 =∫_0 ^(π/2) ((sinx)/(sinx))dx=∣x∣_0 ^(π/2) =(π/2)  so I_n =(π/2)
InIn2=0π2sinnxsin(n2)xsinxdx=0π22cos(n1)xsinxsinxdxInIn2=2sin(n1)xn10π2=2n1sin(n1)π2=0whenn=oddthenn1=evensosin(n1)π2=sin(2k×π2)=0In=In2I3=I1I5=I3soI1=I3=I5=I7.I1=0π2sinxsinxdx=∣x0π2=π2soIn=π2
Commented by M±th+et£s last updated on 28/Feb/20
god bless you sir
godblessyousir
Commented by TANMAY PANACEA last updated on 28/Feb/20
blessing shower to all
blessingshowertoall

Leave a Reply

Your email address will not be published. Required fields are marked *