Question Number 111617 by mathdave last updated on 04/Sep/20

Answered by mathmax by abdo last updated on 04/Sep/20
![A =∫_0 ^(π/4) ((ln(2cos^2 x))/(cos(2x)))dx ⇒ A =∫_0 ^(π/4) ((ln(1+cos(2x)))/(cos(2x)))dx =_(2x=t) ∫_0 ^(π/2) ((ln(1+cost))/(cost)) dt let f(a) =∫_0 ^(π/2) ((ln(1+acost))/(cost)) dt (o<a<1) we have f^′ (a) =∫_0 ^(π/2) ((cost)/((1+acost)cost))dt =∫_0 ^(π/2) (dt/(1+acost)) =_(tan((t/2))=u) ∫_0 ^1 ((2du)/((1+u^2 )(1+a((1−u^2 )/(1+u^2 ))))) =2∫_0 ^1 (du/(1+u^2 +a−au^2 )) =2∫_0 ^1 (du/((1−a)u^2 +1+a)) =(2/(1−a)) ∫_0 ^1 (du/(u^2 +((1+a)/(1−a)))) =_(u=(√((1+a)/(1−a)))z) (2/(1−a))×((1−a)/(1+a)) ∫_0 ^(√((1−a)/(1+a))) (1/(1+z^2 ))×((√(1+a))/( (√(1−a)))) dz =(2/( (√(1−a^2 )))) arctan(√((1−a)/(1+a))) ⇒ f(a) =2∫_0 ^a ((arctan(√((1−t)/(1+t))))/( (√(1−t^2 )))) dt +c (c=f(0) =0) ⇒ f(a) =2∫_0 ^a ((arctan(√((1−t)/(1+t))))/( (√(1−t^2 )))) dt and ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx =lim_(a→1) f(a) =2∫_0 ^1 ((arctan(√((1−t)/(1+t))))/( (√(1−t^2 )))) dt =_(t =cosθ) 2∫_(π/2) ^0 ((arctan(√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2))))))/(sinθ))(−sinθ)dθ =2∫_0 ^(π/2) arctan(tan((θ/2)))dθ =2 ∫_0 ^(π/2) (θ/2) dθ =[(θ^2 /2)]_0 ^(π/2) =(π^2 /8) ⇒ ★∫_0 ^(π/4) ((ln(2cos^2 x))/(cos(2x)))dx =(π^2 /8) ★](https://www.tinkutara.com/question/Q111681.png)
Commented by mathmax by abdo last updated on 04/Sep/20

Commented by Tawa11 last updated on 06/Sep/21

Answered by mathdave last updated on 04/Sep/20
![solution from 2cos^2 x=1+cos2x I=∫_0 ^(π/4) ((ln(2cos^2 x))/(cos2x))dx=∫_0 ^(π/4) ((ln(1+cos2x))/(cos2x))dx let y=2x I=(1/2)∫_0 ^(π/2) ((ln(cosy))/(cosy))dy using Duis let I(α)=(1/2)∫_0 ^(π/2) ((ln(1+αcosy))/(cosy))dy I^′ (α)=(1/2)∫_0 ^(π/2) ∫_0 ^1 (1/(1+αcosy))dαdy but cosy=((1−tan^2 (y/2))/(1+tan^2 (y/2)))=((1−t^2 )/(1+t^2 )) let t=tan(y/2) and dy=((2dt)/(1+t^2 )) I=(1/2)∫_0 ^(π/2) ∫_0 ^1 (1/(1+α(((1−t^2 )/(1+t^2 )))))×((2dt)/(1+t^2 ))dtdα I=∫_0 ^(π/2) ∫_0 ^1 (1/((1+t^2 +α−αt^2 )))dtdα=∫_0 ^(π/2) ∫_0 ^1 (1/((1+α)+(1−α)t^2 ))dtdα I(α)=∫_0 ^(π/2) (1/(1−α))∫_0 ^1 (1/(((√((1+α)/(1−α))))^2 +t^2 ))dαdt but t=tan(y/2)=tan(π/4)=1 I(α)=∫_0 ^1 (1/(1−α))•(1/( (√((1+α)/(1−α)))))tan^(−1) [(t/( (√((1+α)/(1−α)))))]_0 ^(π/2) dα I(α)=∫_0 ^1 (1/(1−α))•((√(1−α^2 ))/(1+α))tan^(−1) [(1/( (√((1+α)/(1−α)))))]dα I(α)=∫_0 ^1 (1/( (√(1−α^2 ))))tan^(−1) [(√((1−α)/(1+α)))]dα let α=cosy and dα=−sinydy and tan(y/2)=(√((1−cosy)/(1+cosy)))=(√((1−α)/(1+α))) =∫_(π/2) ^0 (1/(siny))tan^(−1) [(√((1−cosy)/(1+cosy)))](−siny)dy =(1/2)∫_0 ^(π/2) tan^(−1) [tan(y/2)]dy=∫_0 ^(π/2) (y/2)dy=(1/2)[(y^2 /2)]_0 ^(π/2) =(1/4)[((π/2))^2 ]=(π^2 /(16)) ∫_0 ^(π/4) ((ln(2cos^2 x))/(cos2x))dx=(π^2 /(16)) Q.E.D by mathdave(04/09/2020)](https://www.tinkutara.com/question/Q111718.png)