Menu Close

show-that-0-pi-4-ln-2cos-2-x-cos2x-dx-pi-2-16-




Question Number 111617 by mathdave last updated on 04/Sep/20
show that  ∫_0 ^(π/4) ((ln(2cos^2 x))/(cos2x))dx=(π^2 /(16))
showthat0π4ln(2cos2x)cos2xdx=π216
Answered by mathmax by abdo last updated on 04/Sep/20
A =∫_0 ^(π/4)  ((ln(2cos^2 x))/(cos(2x)))dx ⇒ A =∫_0 ^(π/4)  ((ln(1+cos(2x)))/(cos(2x)))dx  =_(2x=t)   ∫_0 ^(π/2)  ((ln(1+cost))/(cost)) dt  let f(a) =∫_0 ^(π/2)  ((ln(1+acost))/(cost)) dt  (o<a<1)  we have f^′ (a) =∫_0 ^(π/2) ((cost)/((1+acost)cost))dt =∫_0 ^(π/2)  (dt/(1+acost))  =_(tan((t/2))=u)     ∫_0 ^1   ((2du)/((1+u^2 )(1+a((1−u^2 )/(1+u^2 ))))) =2∫_0 ^1  (du/(1+u^2  +a−au^2 ))  =2∫_0 ^1   (du/((1−a)u^2  +1+a)) =(2/(1−a)) ∫_0 ^1  (du/(u^2  +((1+a)/(1−a))))  =_(u=(√((1+a)/(1−a)))z)     (2/(1−a))×((1−a)/(1+a)) ∫_0 ^(√((1−a)/(1+a)))         (1/(1+z^2 ))×((√(1+a))/( (√(1−a)))) dz  =(2/( (√(1−a^2 )))) arctan(√((1−a)/(1+a))) ⇒  f(a) =2∫_0 ^a  ((arctan(√((1−t)/(1+t))))/( (√(1−t^2 )))) dt +c   (c=f(0) =0) ⇒  f(a) =2∫_0 ^a   ((arctan(√((1−t)/(1+t))))/( (√(1−t^2 )))) dt and   ∫_0 ^(π/2) ((ln(1+cosx))/(cosx)) dx =lim_(a→1) f(a) =2∫_0 ^1  ((arctan(√((1−t)/(1+t))))/( (√(1−t^2 )))) dt  =_(t =cosθ)    2∫_(π/2) ^0  ((arctan(√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2))))))/(sinθ))(−sinθ)dθ  =2∫_0 ^(π/2)  arctan(tan((θ/2)))dθ =2 ∫_0 ^(π/2) (θ/2) dθ  =[(θ^2 /2)]_0 ^(π/2)  =(π^2 /8) ⇒  ★∫_0 ^(π/4)  ((ln(2cos^2 x))/(cos(2x)))dx =(π^2 /8) ★
A=0π4ln(2cos2x)cos(2x)dxA=0π4ln(1+cos(2x))cos(2x)dx=2x=t0π2ln(1+cost)costdtletf(a)=0π2ln(1+acost)costdt(o<a<1)wehavef(a)=0π2cost(1+acost)costdt=0π2dt1+acost=tan(t2)=u012du(1+u2)(1+a1u21+u2)=201du1+u2+aau2=201du(1a)u2+1+a=21a01duu2+1+a1a=u=1+a1az21a×1a1+a01a1+a11+z2×1+a1adz=21a2arctan1a1+af(a)=20aarctan1t1+t1t2dt+c(c=f(0)=0)f(a)=20aarctan1t1+t1t2dtand0π2ln(1+cosx)cosxdx=lima1f(a)=201arctan1t1+t1t2dt=t=cosθ2π20arctan2sin2(θ2)2cos2(θ2)sinθ(sinθ)dθ=20π2arctan(tan(θ2))dθ=20π2θ2dθ=[θ22]0π2=π280π4ln(2cos2x)cos(2x)dx=π28
Commented by mathmax by abdo last updated on 04/Sep/20
sorry error at line 2  we have   A =(1/2)∫_0 ^(π/2) ((ln(1+cosx))/(cosx))dx ⇒  A =(π^2 /(16))
sorryerroratline2wehaveA=120π2ln(1+cosx)cosxdxA=π216
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir
Answered by mathdave last updated on 04/Sep/20
solution  from 2cos^2 x=1+cos2x  I=∫_0 ^(π/4) ((ln(2cos^2 x))/(cos2x))dx=∫_0 ^(π/4) ((ln(1+cos2x))/(cos2x))dx  let y=2x  I=(1/2)∫_0 ^(π/2) ((ln(cosy))/(cosy))dy     using Duis  let I(α)=(1/2)∫_0 ^(π/2) ((ln(1+αcosy))/(cosy))dy  I^′ (α)=(1/2)∫_0 ^(π/2) ∫_0 ^1 (1/(1+αcosy))dαdy  but cosy=((1−tan^2 (y/2))/(1+tan^2 (y/2)))=((1−t^2 )/(1+t^2 ))      let  t=tan(y/2)  and  dy=((2dt)/(1+t^2 ))  I=(1/2)∫_0 ^(π/2) ∫_0 ^1 (1/(1+α(((1−t^2 )/(1+t^2 )))))×((2dt)/(1+t^2 ))dtdα  I=∫_0 ^(π/2) ∫_0 ^1 (1/((1+t^2 +α−αt^2 )))dtdα=∫_0 ^(π/2) ∫_0 ^1 (1/((1+α)+(1−α)t^2 ))dtdα  I(α)=∫_0 ^(π/2) (1/(1−α))∫_0 ^1 (1/(((√((1+α)/(1−α))))^2 +t^2 ))dαdt  but t=tan(y/2)=tan(π/4)=1  I(α)=∫_0 ^1 (1/(1−α))•(1/( (√((1+α)/(1−α)))))tan^(−1) [(t/( (√((1+α)/(1−α)))))]_0 ^(π/2) dα  I(α)=∫_0 ^1 (1/(1−α))•((√(1−α^2 ))/(1+α))tan^(−1) [(1/( (√((1+α)/(1−α)))))]dα  I(α)=∫_0 ^1 (1/( (√(1−α^2 ))))tan^(−1) [(√((1−α)/(1+α)))]dα  let  α=cosy   and dα=−sinydy  and tan(y/2)=(√((1−cosy)/(1+cosy)))=(√((1−α)/(1+α)))  =∫_(π/2) ^0 (1/(siny))tan^(−1) [(√((1−cosy)/(1+cosy)))](−siny)dy  =(1/2)∫_0 ^(π/2) tan^(−1) [tan(y/2)]dy=∫_0 ^(π/2) (y/2)dy=(1/2)[(y^2 /2)]_0 ^(π/2)   =(1/4)[((π/2))^2 ]=(π^2 /(16))  ∫_0 ^(π/4) ((ln(2cos^2 x))/(cos2x))dx=(π^2 /(16))        Q.E.D  by mathdave(04/09/2020)
solutionfrom2cos2x=1+cos2xI=0π4ln(2cos2x)cos2xdx=0π4ln(1+cos2x)cos2xdxlety=2xI=120π2ln(cosy)cosydyusingDuisletI(α)=120π2ln(1+αcosy)cosydyI(α)=120π20111+αcosydαdybutcosy=1tan2y21+tan2y2=1t21+t2lett=tany2anddy=2dt1+t2I=120π20111+α(1t21+t2)×2dt1+t2dtdαI=0π2011(1+t2+ααt2)dtdα=0π2011(1+α)+(1α)t2dtdαI(α)=0π211α011(1+α1α)2+t2dαdtbutt=tany2=tanπ4=1I(α)=0111α11+α1αtan1[t1+α1α]0π2dαI(α)=0111α1α21+αtan1[11+α1α]dαI(α)=0111α2tan1[1α1+α]dαletα=cosyanddα=sinydyandtany2=1cosy1+cosy=1α1+α=π201sinytan1[1cosy1+cosy](siny)dy=120π2tan1[tany2]dy=0π2y2dy=12[y22]0π2=14[(π2)2]=π2160π4ln(2cos2x)cos2xdx=π216Q.E.Dbymathdave(04/09/2020)

Leave a Reply

Your email address will not be published. Required fields are marked *