Menu Close

Show-that-0-sin-x-x-pi-2-




Question Number 58791 by Tawa1 last updated on 30/Apr/19
 Show that:         ∫_( 0) ^( ∞)    ((sin(x))/x)   =  (π/2)
Showthat:0sin(x)x=π2
Answered by tanmay last updated on 30/Apr/19
it has some trick to solve...  F(a)=∫_0 ^∞ ((e^(−ax) sinx)/x)dx  (dF/da)=∫_0 ^∞ ((sinx)/x)×(∂/∂a)(e^(−ax) )dx  =∫_0 ^∞ ((sinx)/x)×e^(−ax) ×−xdx  =∫_0 ^∞ −sinx×e^(−ax) dx  now let  p=∫_0 ^∞ e^(−ax) ×cosxdx  q=∫_0 ^∞ e^(−ax) ×sinxdx  p+iq=∫_0 ^∞ e^(−ax) ×e^(ix) dx  p+iq=∫_0 ^∞ e^(−x(a−i)) dx  =∣(e^(−x(a−i)) /(−(a−i)))∣_0 ^∞ =((−1)/(−a+i))=(1/(a−i))=((a+i)/(a^2 +1))  p=(a/(a^2 +1))  and  iq=i((1/(a^2 +1)))  q=(1/(a^2 +1))  ∫_0 ^∞ −e^(−ax) ×sinxdx=−q=((−1)/(a^2 +1))  ∫_0 ^∞ −e^(−ax) ×sinxdx=((−1)/(a^2 +1))=((dF(a))/da)  ∫dF(a)=(−1)∫(da/(a^2 +1))  F(a)=(−1)tan^(−1) a+c    as a→∞ F(a)→0  0=(−1)tan^(−1) (∞)+c  0=−(π/2)+c  c=(π/2)  F(a)=−tan^(−1) (a)+(π/2)  nowF(a)=∫_0 ^∞ e^(−ax) ×((sinx)/x)dx=−tan^(−1) (a)+(π/2)  now if you put a=0  we get  ∫_0 ^∞ ((sinx)/x)dx=−tan^(−1) (0)+(π/2)  ∫_0 ^∞ ((sinx)/x)dx=(π/2)
ithassometricktosolveF(a)=0eaxsinxxdxdFda=0sinxx×a(eax)dx=0sinxx×eax×xdx=0sinx×eaxdxnowletp=0eax×cosxdxq=0eax×sinxdxp+iq=0eax×eixdxp+iq=0ex(ai)dx=∣ex(ai)(ai)0=1a+i=1ai=a+ia2+1p=aa2+1andiq=i(1a2+1)q=1a2+10eax×sinxdx=q=1a2+10eax×sinxdx=1a2+1=dF(a)dadF(a)=(1)daa2+1F(a)=(1)tan1a+casaF(a)00=(1)tan1()+c0=π2+cc=π2F(a)=tan1(a)+π2nowF(a)=0eax×sinxxdx=tan1(a)+π2nowifyouputa=0weget0sinxxdx=tan1(0)+π20sinxxdx=π2
Commented by Tawa1 last updated on 30/Apr/19
God bless you sir
Godblessyousir
Commented by tanmay last updated on 30/Apr/19
than you...blessing shower to all
thanyoublessingshowertoall

Leave a Reply

Your email address will not be published. Required fields are marked *