Menu Close

show-that-0-x-1-x-6-dx-pi-3-3-




Question Number 54585 by peter frank last updated on 07/Feb/19
show that ∫_0 ^∞ (x/(1+x^6 ))dx=(π/(3(√3)))
showthat0x1+x6dx=π33
Commented by maxmathsup by imad last updated on 07/Feb/19
let  I = ∫_0 ^∞   (x/(1+x^6 ))dx   changement  x^6 =t give x =t^(1/6)  ⇒  I =∫_0 ^∞   (t^(1/6) /(1+t)) (1/6) t^((1/6)−1)  dt = (1/6)  ∫_0 ^∞   (t^((1/3)−1) /(1+t)) dt  but we have proved that  ∫_0 ^∞  (t^(a−1) /(1+t)) dt =(π/(sin(πa)))   with 0<a<1 ⇒ I =(1/6) (π/(sin((π/3)))) =(π/(6((√3)/2))) =(π/(3(√3))) .
letI=0x1+x6dxchangementx6=tgivex=t16I=0t161+t16t161dt=160t1311+tdtbutwehaveprovedthat0ta11+tdt=πsin(πa)with0<a<1I=16πsin(π3)=π632=π33.
Answered by arvinddayama00@gmail.com last updated on 08/Feb/19
x^2 =t          x=0,t=0  2xdx=dt   x=∞,t=∞     (1/2)∫_(0 ) ^∞ (dt/(1+t^3 ))  ∵∫_0 ^∞ (dx/(1+x^α ))=(π/(αsin((π/α))))★★  so(1/2)∫_0 ^∞ (dt/(1+t^3 ))=(1/2).(π/(3.((√3)/2)))=(π/(3(√3)))  pls.. cheak.....
x2=tx=0,t=02xdx=dtx=,t=120dt1+t30dx1+xα=παsin(πα)so120dt1+t3=12.π3.32=π33pls..cheak..
Commented by peter frank last updated on 07/Feb/19
right sir
rightsir
Commented by rahul 19 last updated on 08/Feb/19
Sir, how ∫_0 ^( ∞) (dx/(1+x^α )) = (π/(αsin ((π/α)))) ?
Sir,how0dx1+xα=παsin(πα)?
Commented by tanmay.chaudhury50@gmail.com last updated on 08/Feb/19
x^α =tan^2 θ   x=(tanθ)^(2/α)   dx=(2/α)(tanθ)^((2/α)−1) (sec^2 θ)dθ  ∫_0 ^(π/2) (2/α)(tanθ)^((2/α)−1) dθ  (2/α)∫_0 ^(π/2) (sinθ)^((2/α)−1) (cosθ)^(1−(2/α)) dθ  now gamma beta function formula  2∫_0 ^(π/2) (sinθ)^(2p−1) (cosθ)^(2q−1) dθ=((⌈(p)⌈q))/(⌈(p+q)))  now here 2p−1=(2/α)−1  so p=(1/α)  2q−1=1−(2/α) so q=(1−(1/α))  now answer is=(1/α)×((⌈((1/α))⌈(1−(1/α)))/(⌈(1)))=(1/α)×(π/(sin((π/α))))  [again formula ⌈(a)⌈(1−a)=(π/(sin(aπ)))]
xα=tan2θx=(tanθ)2αdx=2α(tanθ)2α1(sec2θ)dθ0π22α(tanθ)2α1dθ2α0π2(sinθ)2α1(cosθ)12αdθnowgammabetafunctionformula20π2(sinθ)2p1(cosθ)2q1dθ=(p)q)(p+q)nowhere2p1=2α1sop=1α2q1=12αsoq=(11α)nowansweris=1α×(1α)(11α)(1)=1α×πsin(πα)[againformula(a)(1a)=πsin(aπ)]

Leave a Reply

Your email address will not be published. Required fields are marked *