Menu Close

Show-that-0-x-2-ln-x-x-4-x-2-1-dx-pi-2-12-




Question Number 130053 by Lordose last updated on 22/Jan/21
Show that     ∫_0 ^( ∞) ((x^2 ln(x))/(x^4 +x^2 +1))dx = (π^2 /(12))
Showthat0x2ln(x)x4+x2+1dx=π212
Answered by Ar Brandon last updated on 22/Jan/21
f(a)=∫_0 ^∞ ((x^2 ln(ax))/(x^4 +x^2 +1))dx  f ′(a)=∫_0 ^∞ (x/(x^4 +x^2 +1))dx , x^2 =u            =(1/2)∫_0 ^∞ (du/(u^2 +u+1))=(1/2)∫_0 ^∞ (du/((u+(1/2))^2 +(3/4)))            =(1/( 2(√3)))[tan^(−1) (((2u+1)/( (√3))))]_0 ^∞ =(1/( 2(√3)))[(π/2)−(π/6)]=(π/( 6(√3)))  f(a)=(π/(6(√3)))a+C...
f(a)=0x2ln(ax)x4+x2+1dxf(a)=0xx4+x2+1dx,x2=u=120duu2+u+1=120du(u+12)2+34=123[tan1(2u+13)]0=123[π2π6]=π63f(a)=π63a+C
Answered by mathmax by abdo last updated on 22/Jan/21
let try this way  Φ=∫_0 ^∞  ((x^2 lnx)/(x^4  +x^2  +1))dx ⇒  Φ=∫_0 ^1  ((x^2 lnx)/(x^4  +x^2  +1))dx +∫_1 ^∞  ((x^2 lnx)/(x^4  +x^2 +1))dx(→x=(1/t))  =∫_0 ^1  ((x^2 lnx)/(x^4 +x^2 +1))dx−∫_0 ^1  ((−lnt)/(t^2 ((1/t^4 ) +(1/t^2 ) +1)))(−(dt/t^2 ))  =∫_0 ^1  ((x^2 lnx)/(x^4 +x^2  +1))dx−∫_0 ^1  ((lnt)/(t^4 +t^2  +1))dt =∫_0 ^1  ((x^2 lnx−lnx)/(1+x^2  +(x^2 )^2 ))  =∫_0 ^1 (((1−x^2 )(x^2 −1)lnx)/(1−x^6 ))dx=−∫_0 ^1 (((x^2 −1)^2 lnx)/(1−x^6 ))dx  =−∫_0 ^1  ((x^4 −2x^2  +1)/(1−x^6 ))dx =−∫_0 ^1 (x^4 −2x^2  +1)Σ_(n=0) ^∞  x^(6n)   =−Σ_(n=0) ^∞  ∫_0 ^1  x^(6n+4) dx+2Σ_(n=0) ^∞  ∫_0 ^1  x^(6n+2) dx−Σ_(n=0) ^∞  ∫_0 ^1  x^(6n) dx  =−Σ_(n=0) ^∞  (1/(6n+5))+2Σ_(n=0) ^∞  (1/(6n+3))−Σ_(n=0) ^∞  (1/(6n+1))  rest calculus of those series ...be continued...
lettrythiswayΦ=0x2lnxx4+x2+1dxΦ=01x2lnxx4+x2+1dx+1x2lnxx4+x2+1dx(x=1t)=01x2lnxx4+x2+1dx01lntt2(1t4+1t2+1)(dtt2)=01x2lnxx4+x2+1dx01lntt4+t2+1dt=01x2lnxlnx1+x2+(x2)2=01(1x2)(x21)lnx1x6dx=01(x21)2lnx1x6dx=01x42x2+11x6dx=01(x42x2+1)n=0x6n=n=001x6n+4dx+2n=001x6n+2dxn=001x6ndx=n=016n+5+2n=016n+3n=016n+1restcalculusofthoseseriesbecontinued
Answered by mnjuly1970 last updated on 22/Jan/21
  φ=∫_(0 ) ^( 1) ((x^2 ln(x))/(1+x^2 +x^4 ))dx+[∫_1 ^( ∞) ((x^2 ln(x))/(1+x^2 +x^4 ))dx =Φ]  Φ=∫_0 ^(  1) ((−ln(x)  )/(1+x^2 +x^4 ))dx  ∅=∫_0 ^( 1) (((x^2 −1)ln(x))/(1+x^2 +x^4 ))dx=∫_0 ^( 1) ((−(x^2 −1)^2 ln(x))/(1−x^6 ))dx  =−∫_0 ^( 1) (((x^4 −2x^2 +1)ln(x))/(1−x^6 ))  =^(x^6 =t) −(1/6)∫_0 ^( 1) (((t^(2/3) −2t^(1/3) +1)t^((−5)/6) ln(t))/(1−t))dt  =((−1)/(36))∫_0 ^( 1() ((t^((−1)/6) −2t^((−1)/2) +t^((−5)/6) )ln(t))/(1−t))dt   f(a)=∫_0 ^( 1) ((t^(a−(1/6)) −2t^(a−(1/2)) +t^(a−(5/6)) )/(1−t))dt   φ=((−1)/(36))f ′(0)   f(a)=∫_0 ^( 1) ((t^(a−(1/6)) −1+1−t^(a−(1/2)) −1+t^(a−(5/6)) −t^(a−(1/2)) +1)/(1−t))dt  =−ψ(a+(5/6))+2ψ(a+(1/2))−ψ(a+(1/6))  =−ψ(a+(5/6))−ψ(a+(1/6))+2ψ(a+(1/2))  f ′(a)=−ψ′(a+(5/6))−ψ′(a+(1/6))+2ψ′(a+(1/2))  f ′(0)=−ψ′((5/6))−ψ′((1/6))+2ψ′((1/2))           =−(π^2 /(sin^2 ((π/6))))+2 (π^2 /2)=−3π^2                 φ=(π^2 /(12)) .....✓✓  m.n.july.1970
ϕ=01x2ln(x)1+x2+x4dx+[1x2ln(x)1+x2+x4dx=Φ]Φ=01ln(x)1+x2+x4dx=01(x21)ln(x)1+x2+x4dx=01(x21)2ln(x)1x6dx=01(x42x2+1)ln(x)1x6=x6=t1601(t232t13+1)t56ln(t)1tdt=13601(t162t12+t56)ln(t)1tdtf(a)=01ta162ta12+ta561tdtϕ=136f(0)f(a)=01ta161+1ta121+ta56ta12+11tdt=ψ(a+56)+2ψ(a+12)ψ(a+16)=ψ(a+56)ψ(a+16)+2ψ(a+12)f(a)=ψ(a+56)ψ(a+16)+2ψ(a+12)f(0)=ψ(56)ψ(16)+2ψ(12)=π2sin2(π6)+2π22=3π2ϕ=π212..m.n.july.1970
Answered by Lordose last updated on 22/Jan/21
  𝛀 = lim_(𝛆→0) ∫_𝛆 ^( ∞) ((x^2 ln(x))/(x^4 +x^2 +1))dx = (∫_1 ^( ∞) ((x^2 ln(x))/(x^4 +x^2 +1))dx + ∫_0 ^( 1) ((x^2 ln(x))/(x^4 +x^2 +1))dx)  Ω = Φ + Ψ  Ψ = ∫_0 ^( ∞) ((x^2 ln(x))/(x^4 +x^2 +1))dx =^(u=(1/x)) ∫_1 ^( 0)  −((−((1/u^2 ))ln(u))/(u^2 ((1/u^4 )+(1/u^2 )+1)))du = −∫_0 ^( 1) ((ln(u))/(u^4 +u^2 +1))du  Ω = ∫_0 ^( 1) ((x^2 ln(x)−ln(x))/(x^4 +x^2 +1))dx = ∫_0 ^( 1) (((1−x^2 )(x^2 −1)ln(x))/(1−x^6 ))dx = −∫_0 ^( 1) (((x^2 −1)^2 ln(x))/(1−x^6 ))dx  Ω =^(t=x^6 ) −∫_0 ^( 1) (((1/6)(t^(1/3) −1)^2 ln(t))/(1−t)) ((t^(−(5/6)) dt)/6) = −(1/(36))∫_0 ^( 1) (((t^((4/6)−(5/6)) −2t^((2/6)−(5/6)) +t^(−(5/6)) )ln(t))/(1−t))dt  Ω(n) = ∫_0 ^( 1) (((t^(−(1/6)+n) −2t^(−(1/2)+n) +t^(−(5/6)+n) ))/(1−t))dt  Ω = −(1/(36))Ω^′ (0)  Ω(n) = ∫_0 ^( 1) ((t^(n−(1/6)) −2t^(n−(1/2)) +t^(n−(5/6)) )/(1−t))dt  Ω(n) = −𝛙^((0)) (n+(1/6)) − 𝛙^((0)) (n+(5/6)) + 2𝛙^((0)) (n+(1/2))  Ω′(n) = −𝛙^((0)^′ ) (n+(1/6)) − 𝛙^((0)^′ ) (n+(5/6)) + 2𝛙^((0)′) (n+(1/2))  Ω′(0) = −(𝛙^((0)′) ((1/6)) + 𝛙^((0)′) ((5/6))) + 2𝛙^((0)′) ((1/2))  Ω′(0) = −(π^2 csc^2 ((π/6)))+2 (π^2 /2)=−3π^2   Ω = −(1/(36))Ω′(0) = (1/(36))∙3π^2  = (π^2 /(12))  ★L𝛗rD ∅sE
Ω=limϵ0ϵx2ln(x)x4+x2+1dx=(1x2ln(x)x4+x2+1dx+01x2ln(x)x4+x2+1dx)Ω=Φ+ΨΨ=0x2ln(x)x4+x2+1dx=u=1x10(1u2)ln(u)u2(1u4+1u2+1)du=01ln(u)u4+u2+1duΩ=01x2ln(x)ln(x)x4+x2+1dx=01(1x2)(x21)ln(x)1x6dx=01(x21)2ln(x)1x6dxΩ=t=x60116(t131)2ln(t)1tt56dt6=13601(t46562t2656+t56)ln(t)1tdtΩ(n)=01(t16+n2t12+n+t56+n)1tdtΩ=136Ω(0)Ω(n)=01tn162tn12+tn561tdtΩ(n)=ψ(0)(n+16)ψ(0)(n+56)+2ψ(0)(n+12)Ω(n)=ψ(0)(n+16)ψ(0)(n+56)+2ψ(0)(n+12)Ω(0)=(ψ(0)(16)+ψ(0)(56))+2ψ(0)(12)Ω(0)=(π2csc2(π6))+2π22=3π2Ω=136Ω(0)=1363π2=π212LϕrDsE

Leave a Reply

Your email address will not be published. Required fields are marked *