Question Number 130053 by Lordose last updated on 22/Jan/21

Answered by Ar Brandon last updated on 22/Jan/21
![f(a)=∫_0 ^∞ ((x^2 ln(ax))/(x^4 +x^2 +1))dx f ′(a)=∫_0 ^∞ (x/(x^4 +x^2 +1))dx , x^2 =u =(1/2)∫_0 ^∞ (du/(u^2 +u+1))=(1/2)∫_0 ^∞ (du/((u+(1/2))^2 +(3/4))) =(1/( 2(√3)))[tan^(−1) (((2u+1)/( (√3))))]_0 ^∞ =(1/( 2(√3)))[(π/2)−(π/6)]=(π/( 6(√3))) f(a)=(π/(6(√3)))a+C...](https://www.tinkutara.com/question/Q130060.png)
Answered by mathmax by abdo last updated on 22/Jan/21

Answered by mnjuly1970 last updated on 22/Jan/21
![φ=∫_(0 ) ^( 1) ((x^2 ln(x))/(1+x^2 +x^4 ))dx+[∫_1 ^( ∞) ((x^2 ln(x))/(1+x^2 +x^4 ))dx =Φ] Φ=∫_0 ^( 1) ((−ln(x) )/(1+x^2 +x^4 ))dx ∅=∫_0 ^( 1) (((x^2 −1)ln(x))/(1+x^2 +x^4 ))dx=∫_0 ^( 1) ((−(x^2 −1)^2 ln(x))/(1−x^6 ))dx =−∫_0 ^( 1) (((x^4 −2x^2 +1)ln(x))/(1−x^6 )) =^(x^6 =t) −(1/6)∫_0 ^( 1) (((t^(2/3) −2t^(1/3) +1)t^((−5)/6) ln(t))/(1−t))dt =((−1)/(36))∫_0 ^( 1() ((t^((−1)/6) −2t^((−1)/2) +t^((−5)/6) )ln(t))/(1−t))dt f(a)=∫_0 ^( 1) ((t^(a−(1/6)) −2t^(a−(1/2)) +t^(a−(5/6)) )/(1−t))dt φ=((−1)/(36))f ′(0) f(a)=∫_0 ^( 1) ((t^(a−(1/6)) −1+1−t^(a−(1/2)) −1+t^(a−(5/6)) −t^(a−(1/2)) +1)/(1−t))dt =−ψ(a+(5/6))+2ψ(a+(1/2))−ψ(a+(1/6)) =−ψ(a+(5/6))−ψ(a+(1/6))+2ψ(a+(1/2)) f ′(a)=−ψ′(a+(5/6))−ψ′(a+(1/6))+2ψ′(a+(1/2)) f ′(0)=−ψ′((5/6))−ψ′((1/6))+2ψ′((1/2)) =−(π^2 /(sin^2 ((π/6))))+2 (π^2 /2)=−3π^2 φ=(π^2 /(12)) .....✓✓ m.n.july.1970](https://www.tinkutara.com/question/Q130070.png)
Answered by Lordose last updated on 22/Jan/21
