Menu Close

show-that-0-x-log-x-x-log-x-dx-e-pi-




Question Number 82446 by M±th+et£s last updated on 21/Feb/20
show that  ∫_0 ^∞ x^(−log(x))  x log(x) dx=e(√π)
showthat0xlog(x)xlog(x)dx=eπ
Commented by abdomathmax last updated on 21/Feb/20
changement logx=t give x=e^t  ⇒  I= ∫_(−∞) ^(+∞)  (e^t )^(−t) e^t t e^t  dt  =∫_(−∞) ^(+∞) t e^(−t^2 +2t)  dt  =∫_(−∞) ^(+∞)  t e^(−(t^2 −2t +1−1)) dt  =∫_(−∞) ^(+∞)  t e^(−(t−1)^2 +1)  dt =_(t−1=u)   e∫_(−∞) ^(+∞) (u+1)e^(−u^2 ) du  but  ∫_(−∞) ^(+∞) (u+1)e^(−u^2 ) du  =∫_(−∞) ^(+∞)  u e^(−u^2 ) du +∫_(−∞) ^(+∞)  e^(−u^2 ) du  =[−(1/2)e^(−u^2 ) ]_(−∞) ^(+∞)  +(√π)=0+(√π) ⇒  I =e(√π)
changementlogx=tgivex=etI=+(et)tettetdt=+tet2+2tdt=+te(t22t+11)dt=+te(t1)2+1dt=t1=ue+(u+1)eu2dubut+(u+1)eu2du=+ueu2du++eu2du=[12eu2]++π=0+πI=eπ
Commented by M±th+et£s last updated on 21/Feb/20
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 21/Feb/20
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *