Menu Close

show-that-0-xsin-x-3-dx-1-3-pi-1-3-




Question Number 110112 by mathdave last updated on 27/Aug/20
show that   ∫_0 ^∞ xsin(x^3 )dx=(1/3)•(π/(Γ((1/3))))
$${show}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}\mathrm{sin}\left({x}^{\mathrm{3}} \right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\bullet\frac{\pi}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)} \\ $$
Answered by mnjuly1970 last updated on 27/Aug/20
x^3 =t⇒{_(dx=(1/3)t^((−2)/3) dt) ^(x=t^(1/3) )   we know::   ∫_0 ^( ∞) ((sin(x))/x^p )dx =^(0<p≤1) (π/(2Γ(p)sin(((pπ)/2))))         Ω=∫_0 ^( ∞) xsin(x^3 )dx=(1/3)∫_0 ^( ∞) ((sin(t))/t^(1/3) )dt   Ω=(1/3)∗ (π/(2Γ((1/3))sin((π/6)))) =(π/(3Γ((1/3)))) ♣  M.N.July 1970
$${x}^{\mathrm{3}} ={t}\Rightarrow\left\{_{{dx}=\frac{\mathrm{1}}{\mathrm{3}}{t}^{\frac{−\mathrm{2}}{\mathrm{3}}} {dt}} ^{{x}={t}^{\frac{\mathrm{1}}{\mathrm{3}}} } \right. \\ $$$${we}\:{know}::\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right)}{{x}^{{p}} }{dx}\:\overset{\mathrm{0}<{p}\leqslant\mathrm{1}} {=}\frac{\pi}{\mathrm{2}\Gamma\left({p}\right){sin}\left(\frac{{p}\pi}{\mathrm{2}}\right)}\:\:\:\:\:\:\: \\ $$$$\Omega=\int_{\mathrm{0}} ^{\:\infty} {xsin}\left({x}^{\mathrm{3}} \right){dx}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right)}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }{dt} \\ $$$$\:\Omega=\frac{\mathrm{1}}{\mathrm{3}}\ast\:\frac{\pi}{\mathrm{2}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right){sin}\left(\frac{\pi}{\mathrm{6}}\right)}\:=\frac{\pi}{\mathrm{3}\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)}\:\clubsuit \\ $$$$\mathscr{M}.\mathscr{N}.\mathscr{J}{uly}\:\mathrm{1970} \\ $$$$\:\:\: \\ $$
Commented by mathdave last updated on 27/Aug/20
u did well man
$${u}\:{did}\:{well}\:{man} \\ $$
Commented by mnjuly1970 last updated on 27/Aug/20
grateful...sir....
$${grateful}…{sir}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *