Menu Close

Show-that-1-1-dx-5-cosh-x-13-sinh-x-1-2-log-e-15e-10-3e-2-




Question Number 29105 by tawa tawa last updated on 04/Feb/18
Show that:   ∫_(−1) ^(   1)        (dx/(5 cosh(x) + 13 sinh(x)))  =  (1/2) log_e (((15e − 10)/(3e + 2)))
Showthat:11dx5cosh(x)+13sinh(x)=12loge(15e103e+2)
Commented by abdo imad last updated on 04/Feb/18
I= ∫_(−1) ^1           (dx/(5((e^x  +e^(−x) )/2) +13 ((e^x  −e^(−x) )/2)))  = ∫_(−1) ^1          ((2dx)/(18 e^x  −8 e^(−x) )) thech. e^x =t give  I= ∫_e^(−1)  ^e         (2/(18t −(8/t))) (dt/t)= ∫_e^(−1)  ^e      (2/(18t^2  −8))dt  I=  ∫_e^(−1)  ^e      (dt/(9t^2  −4))   =>  9I=(3/4) ∫_e^(−1)  ^e  ( (1/(t−(2/3))) − (1/(t+(2/3))))dt  I= (1/(12)) ln∣ ((t−(2/3))/(t+(2/3)))∣_e^(−1)  ^e = (1/(12))(ln∣ ((3e−2)/(3e +2))∣ −ln∣((3e^(−1) −2)/(3e^(−1)  +2))∣....
I=11dx5ex+ex2+13exex2=112dx18ex8exthech.ex=tgiveI=e1e218t8tdtt=e1e218t28dtI=e1edt9t24=>9I=34e1e(1t231t+23)dtI=112lnt23t+23e1e=112(ln3e23e+2ln3e123e1+2.
Commented by tawa tawa last updated on 04/Feb/18
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *