Question Number 92119 by M±th+et+s last updated on 04/May/20
$${show}\:{that}\: \\ $$$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\lfloor{x}\rfloor^{\mathrm{2}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}\:{dy}}{\mathrm{1}−{xy}} \\ $$
Commented by mathmax by abdo last updated on 05/May/20
$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}−{xy}}\:=−\frac{\mathrm{1}}{{y}}\left[{ln}\mid\mathrm{1}−{xy}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:=−\frac{\mathrm{1}}{{y}}\left\{{ln}\left(\mathrm{1}−{y}\right)\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}−{xy}}{dxdy}\:=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{y}\right)}{{y}}{dy} \\ $$$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}−{y}\right)\:=−\frac{\mathrm{1}}{\mathrm{1}−{y}}\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:{y}^{{n}} \:\Rightarrow \\ $$$${ln}\left(\mathrm{1}−{y}\right)\:=−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{y}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{y}^{{n}} }{{n}}\:\Rightarrow−\frac{{ln}\left(\mathrm{1}−{y}\right)}{{y}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{y}^{{n}−\mathrm{1}} }{{n}} \\ $$$$\Rightarrow−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{y}\right)}{{y}}{dy}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} \:{y}^{{n}−\mathrm{1}} {dy} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\:{also}\:{we}\:{have} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{\left[{x}\right]^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{{n}} ^{{n}+\mathrm{1}} \:\frac{{dx}}{{n}^{\mathrm{2}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{1}−{xy}}{dxdy}\:=\int_{\mathrm{1}} ^{\infty} \:\frac{{dx}}{\left[{x}\right]^{\mathrm{2}} }\:\:\left(=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right) \\ $$
Commented by M±th+et+s last updated on 05/May/20
$${very}\:{cool}\:{thank}\:{you}\:{sir} \\ $$
Commented by mathmax by abdo last updated on 05/May/20
$${you}\:{are}\:{welcome}\:{sir}. \\ $$