Menu Close

Show-that-1-2-2-2-3-2-n-n-1-2-1-2-2-2-2-3-n-2-n-1-3n-5-3n-1-




Question Number 45932 by Tawa1 last updated on 18/Oct/18
Show that:    ((1.2^2  + 2.3^2  + ... + n(n + 1)^2 )/(1^2 .2 + 2^2 .3 + ... + n^2 (n + 1)))  =  ((3n + 5)/(3n + 1))
Showthat:1.22+2.32++n(n+1)212.2+22.3++n2(n+1)=3n+53n+1
Commented by math khazana by abdo last updated on 19/Oct/18
S_n =((Σ_(k=1) ^n k(k+1)^2 )/(Σ_(k=1) ^n k^2 (k+1))) =((Σ_(k=1) ^n k(k^2 +2k+1))/(Σ_(k=1) ^n k^3  +Σ_k ^n k^2 ))    =((Σ_(k=1) ^n k^3  +2Σ_(k=1) ^n k^2  +Σ_(k=1) ^n k)/(Σ_(k=1) ^n k^3 +Σ_(k=1) ^n k^2 ))  =((((n^2 (n+1)^2 )/4)+2 ((n(n+1)(2n+1))/6)+((n(n+1))/2))/(((n^2 (n+1)^2 )/4)+((n(n+1)(2n+1))/6)))  =((((n(n+1))/2) +(2/3)(2n+1) +1)/(((n(n+1))/2) +((2n+1)/3)))  =((3n(n+1)+4(2n+1)+6)/(3n(n+1)+4n+2))  =((3n^2  +3n+8n+4+6)/(3n^2 +3n+4n+2)) =((3n^2  +11n+10)/(3n^2 +7n +2))  roots of 3n^2 +7n+2  Δ=49−4.3.2=49−24=25⇒n_1 =((−7+5)/6) =−(1/3)  n_2 =((−7−5)/6) =−2  roots of 3n^2 +11n+10→Δ=121−4.3.10  =121−120=1 ⇒n_3 =((−11+1)/6) =−(5/3)  n_3 =((−11−1)/6) =−2 ⇒  S_n =((3(n+(1/3))(n+2))/(3(n+(5/3))(n+2))) =((3n+1)/(3n+5))  and there is a error  at the Q.
Sn=k=1nk(k+1)2k=1nk2(k+1)=k=1nk(k2+2k+1)k=1nk3+knk2=k=1nk3+2k=1nk2+k=1nkk=1nk3+k=1nk2=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2n2(n+1)24+n(n+1)(2n+1)6=n(n+1)2+23(2n+1)+1n(n+1)2+2n+13=3n(n+1)+4(2n+1)+63n(n+1)+4n+2=3n2+3n+8n+4+63n2+3n+4n+2=3n2+11n+103n2+7n+2rootsof3n2+7n+2Δ=494.3.2=4924=25n1=7+56=13n2=756=2rootsof3n2+11n+10Δ=1214.3.10=121120=1n3=11+16=53n3=1116=2Sn=3(n+13)(n+2)3(n+53)(n+2)=3n+13n+5andthereisaerrorattheQ.
Commented by math khazana by abdo last updated on 19/Oct/18
error at the final line S_n =((3(n+(5/3))(n+2))/(3(n+(1/3))(n+2)))  =((3n+5)/(3n+1)) and ther is no error at the Q...
erroratthefinallineSn=3(n+53)(n+2)3(n+13)(n+2)=3n+53n+1andtherisnoerrorattheQ
Commented by Tawa1 last updated on 19/Oct/18
God bless you sir
Godblessyousir
Commented by maxmathsup by imad last updated on 19/Oct/18
you are welcome sir
youarewelcomesir
Answered by math1967 last updated on 19/Oct/18
S_n =1.2^2 +2.3^2 +.....+n(n+1)^2   =t_1 +t_(2 ) .......+n^3 +2n^2 +n  ∴t_(1  ) +t_2 +......t_n =(1^3 +2^3 +...n^3 )+2(1^2 +2^2 +..+n^2 )+  (1+2+..n)  ∴S_(n   ) =((n^2 (n+1)^2 )/4) +2((n(n+1)(2n+1))/6)+((n(n+1))/2)  =((n(n+1)(3n+5)(n+2))/(12))  Again 1^2 .2+2^2 .3+...n^2 (n+1)  ∴t_n =n^3 +n^2   ∴S_n =(1^3 +2^3 +....+n^3 ) +(1^2 +2^2 +..+n^2 )  =((n^2 (n+1)^2 )/4)+((n(n+1)(2n+1))/6)   =((n(n+1)(n+2)(3n+1))/(12))  ∴((1.2^2 +2.3^2 +....n(n+1)^2 )/(1^2 .2+2^2 .3+.....n^2 (n+1)))  ((n(n+1)(3n+5)(n+2))/(12))×((12)/(n(n+1)(n+2)(3n+1)))  =((3n+5)/(3n+1))  (proved)
Sn=1.22+2.32+..+n(n+1)2=t1+t2.+n3+2n2+nt1+t2+tn=(13+23+n3)+2(12+22+..+n2)+(1+2+..n)Sn=n2(n+1)24+2n(n+1)(2n+1)6+n(n+1)2=n(n+1)(3n+5)(n+2)12Again12.2+22.3+n2(n+1)tn=n3+n2Sn=(13+23+.+n3)+(12+22+..+n2)=n2(n+1)24+n(n+1)(2n+1)6=n(n+1)(n+2)(3n+1)121.22+2.32+.n(n+1)212.2+22.3+..n2(n+1)n(n+1)(3n+5)(n+2)12×12n(n+1)(n+2)(3n+1)=3n+53n+1(proved)
Commented by Tawa1 last updated on 19/Oct/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *