Menu Close

show-that-1-cos-1-cos-tan-2-1-2-




Question Number 187330 by Humble last updated on 16/Feb/23
  show that ((1−cosθ)/(1+cosθ))=tan^2 ((1/2)θ)
showthat1cosθ1+cosθ=tan2(12θ)
Answered by Frix last updated on 16/Feb/23
What are we allowed to use?  tan^2  x =((sin^2  x)/(cos^2  x))=(((1−cos 2x)/2)/((1+cos 2x)/2))=((1−cos 2x)/(1+cos 2x))  ⇒  ((1−cos θ)/(1+cos θ))=(((1−cos θ)/2)/((1+cos θ)/2))=((sin^2  (θ/2))/(cos^2  (θ/2)))=tan^2  (θ/2)  or  cos θ =((e^(iθ) +e^(−iθ) )/2)=((1+e^(2iθ) )/(2e^(iθ) ))  sin θ =((1−e^(2iθ) )/(2e^(iθ) ))i  ((1−cos θ)/(1+cos θ))=((−(((1−e^(iθ) )^2 )/(2e^(iθ) )))/(((1+e^(iθ) )^2 )/(2e^(iθ) )))=−(((1−e^(iθ) )/(1+e^(iθ) )))^2 =  =(((1−e^(iθ) )/(1+e^(iθ) ))i)^2 =(((1−e^(2i(θ/2)) )/(1+e^(2i(θ/2)) ))i)^2 =(((((1−e^(2i(θ/2)) )/(2e^(i(θ/2)) ))i)/((1+e^(2i(θ/2)) )/(2e^(i(θ/2)) ))))^2 =  =(((sin (θ/2))/(cos (θ/2))))^2 =tan^2  (θ/2)
Whatareweallowedtouse?tan2x=sin2xcos2x=1cos2x21+cos2x2=1cos2x1+cos2x1cosθ1+cosθ=1cosθ21+cosθ2=sin2θ2cos2θ2=tan2θ2orcosθ=eiθ+eiθ2=1+e2iθ2eiθsinθ=1e2iθ2eiθi1cosθ1+cosθ=(1eiθ)22eiθ(1+eiθ)22eiθ=(1eiθ1+eiθ)2==(1eiθ1+eiθi)2=(1e2iθ21+e2iθ2i)2=(1e2iθ22eiθ2i1+e2iθ22eiθ2)2==(sinθ2cosθ2)2=tan2θ2
Commented by Humble last updated on 16/Feb/23
awesome!!. thank you, sir
awesome!!.thankyou,sir
Commented by Frix last updated on 16/Feb/23
��

Leave a Reply

Your email address will not be published. Required fields are marked *