Question Number 163574 by Zaynal last updated on 08/Jan/22
$$\boldsymbol{{Show}}\:\boldsymbol{{that}}; \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{1}} ^{\infty} \:\frac{\boldsymbol{{In}}\:\boldsymbol{{x}}}{\boldsymbol{{x}}^{\mathrm{4}} }\:\boldsymbol{{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{9}} \\ $$
Answered by Ar Brandon last updated on 08/Jan/22
$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{ln}{x}}{{x}^{\mathrm{4}} }{dx}=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{0}} \int_{\mathrm{1}} ^{\infty} \frac{{x}^{\alpha} }{{x}^{\mathrm{4}} }{dx}=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{0}} \left[\frac{{x}^{\alpha−\mathrm{3}} }{\alpha−\mathrm{3}}\right]_{\mathrm{1}} ^{\infty} \\ $$$$=\frac{\partial}{\partial\alpha}\mid_{\alpha=\mathrm{0}} \frac{\mathrm{1}}{\mathrm{3}−\alpha}=\mid_{\alpha=\mathrm{0}} \frac{\mathrm{1}}{\left(\mathrm{3}−\alpha\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{9}} \\ $$