Menu Close

Show-that-1-x-1-1-x-1-x-1-1-x-1-when-x-3-2-




Question Number 34422 by math1967 last updated on 06/May/18
Show that  ((1+x)/(1+(√(1+x)) )) +((1−x)/(1−(√(1−x )))) =1 when x=((√(3 ))/2)
Showthat1+x1+1+x+1x11x=1whenx=32
Answered by Rio Mike last updated on 06/May/18
((1+((√3)/2))/(1+(√(1+((√3)/2)))))  +   ((1− ((√3)/2))/(1−(√(1−((√3)/2)))))  (((2+(√3))/2)/(1+ (√(1+((√3)/2)))))   +   (((2−(√3))/2)/(1−(√(1−((√3)/2)))))  ((2+(√3))/(2(1+(√(1+((√3)/2)))))) +  ((2−(√3))/(2(1−(√(1−(√((√3)/2))))))))   (((2+(√3)) (1−(√(1+((√3)/2)))))/(−(√3))) + 2+2(√(1−((√3)/2) )) − (√(3 )) −(√(3(1−((√3)/2) )))   ((−2(√3) + 2(√(3+((3(√3))/2))) −3 + (√(9+((9(√3))/2))) + 2(√3) + 2(√(3−((3(√3))/2))) −3−(√9) − ((9(√3))/2))/3)  ((2(√(3+((3(√3))/2) )) − 6 + (√(9+((9(√3))/2) )) + 2(√(3−((3(√3))/2))) − (√9) − ((9(√3))/2))/3)  ≈ 1
1+321+1+32+13211322+321+1+32+23211322+32(1+1+32)+232(1132))(2+3)(11+32)3+2+213233(132)23+23+3323+9+932+23+2333239932323+3326+9+932+23332993231
Answered by tanmay.chaudhury50@gmail.com last updated on 06/May/18
first find (√(1+x)) and(√(1−x))   1+x=1+((√3)/2)   and 1−x=1−((√3)/2)  =((2+(√3))/2)   and 1−x=((2−(√3))/2)  =((4+2(√3))/4)   and=((4−2(√3))/4)  =((((√3)+1)^2 )/(2^2  )) and=((((√3)−1)^2 )/2^2 )  so (√(1+x))  =(((√3) +1)/(2  )) and(√(1−x)) =(((√3) −1)/2)  =((2+(√3))/(2(1+(((√3)+1)/2))))+((2−(√3))/(2(1−(((√3)−1)/2))))  =((2+(√3))/(3+(√3)))+((2−(√3))/(3−(√3)))  =((6−2(√3)+3(√3)−3+6+2(√3)−3(√3) −3)/(9−3))  =6/6=1 Ans
firstfind1+xand1x1+x=1+32and1x=132=2+32and1x=232=4+234and=4234=(3+1)222and=(31)222so1+x=3+12and1x=312=2+32(1+3+12)+232(1312)=2+33+3+2333=623+333+6+2333393=6/6=1Ans
Commented by Rasheed.Sindhi last updated on 06/May/18
Fine!
Fine!

Leave a Reply

Your email address will not be published. Required fields are marked *