Menu Close

show-that-1-x-pi-sin-pix-x-2-4x-5-dx-1-e-pi-




Question Number 110214 by mathdave last updated on 27/Aug/20
show that   ∫_(−∞) ^(+∞) (((1+(x/π))sin(πx))/(x^2 +4x+5))dx=(1/e^π )
showthat+(1+xπ)sin(πx)x2+4x+5dx=1eπ
Answered by mathmax by abdo last updated on 27/Aug/20
I =∫_(−∞) ^(+∞)  (((1+(x/π))sin(πx))/(x^2  +4x +5))=Im(∫_(−∞) ^(+∞)  (((1+(x/π))e^(iπx) )/(x^2  +4x+5)))  let condider the complex function  ϕ(z) =(((1+(z/π))e^(iπz) )/(z^2  +4z +5))  poles of ϕ?  z^2  +4z +5 =0→Δ^′  =4−5 =−1 ⇒z_1 =−2+i  and z_2 =−2−i  residus theorem ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπRes(ϕ,−2+i)  we have ϕ(z) =(((1+(z/π))e^(iπz) )/((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,−2+i) =  =lim_(z→z_1 ) (z−z_1 )ϕ(z) =  (((1+(z_1 /π))e^(iπz_1 ) )/(2i)) =(((1+((−2+i)/π))e^(iπ(−2+i)) )/(2i)) ⇒  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ×(((π−2+i)e^(−π) )/(2iπ)) =(π−2 +i)e^(−π)   =(π−2)e^(−π)  +i e^(−π)  ⇒ Im(∫....) = e^(−π)  ⇒★ I =(1/e^π )★
I=+(1+xπ)sin(πx)x2+4x+5=Im(+(1+xπ)eiπxx2+4x+5)letcondiderthecomplexfunctionφ(z)=(1+zπ)eiπzz2+4z+5polesofφ?z2+4z+5=0Δ=45=1z1=2+iandz2=2iresidustheorem+φ(z)dz=2iπRes(φ,2+i)wehaveφ(z)=(1+zπ)eiπz(zz1)(zz2)Res(φ,2+i)==limzz1(zz1)φ(z)=(1+z1π)eiπz12i=(1+2+iπ)eiπ(2+i)2i+φ(z)dz=2iπ×(π2+i)eπ2iπ=(π2+i)eπ=(π2)eπ+ieπIm(.)=eπI=1eπ

Leave a Reply

Your email address will not be published. Required fields are marked *