Menu Close

show-that-1-x-x-1-x-2-x-3-x-m-2-dx-1-m-2-n-0-m-m-n-2-n-x-2-m-2-ln-n-0-m-x-n-m-n-2-H-m-n-H-n-c-




Question Number 85646 by M±th+et£s last updated on 23/Mar/20
show that  ∫(1/([x(x−1)(x−2)(x−3)...(x−m)]^2 ))dx=  =(1/((m!)^2 ))Σ_(n=0) ^m ( ((m),(n) )^2 /(n−x))+(2/((m!)^2 ))ln∣Π_(n=0) ^m (x−n)^( ((m),(n) )^2 (H_(m−n) −H_n )) ∣+c
$${show}\:{that} \\ $$$$\int\frac{\mathrm{1}}{\left[{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)…\left({x}−{m}\right)\right]^{\mathrm{2}} }{dx}= \\ $$$$=\frac{\mathrm{1}}{\left({m}!\right)^{\mathrm{2}} }\underset{{n}=\mathrm{0}} {\overset{{m}} {\sum}}\frac{\begin{pmatrix}{{m}}\\{{n}}\end{pmatrix}^{\mathrm{2}} }{{n}−{x}}+\frac{\mathrm{2}}{\left({m}!\right)^{\mathrm{2}} }{ln}\mid\underset{{n}=\mathrm{0}} {\overset{{m}} {\prod}}\left({x}−{n}\right)^{\begin{pmatrix}{{m}}\\{{n}}\end{pmatrix}^{\mathrm{2}} \left({H}_{{m}−{n}} −{H}_{{n}} \right)} \mid+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *