Menu Close

Show-that-3-cosec20-sec20-4-




Question Number 15641 by tawa tawa last updated on 12/Jun/17
Show that.  (√3)(cosec20) − sec20 = 4
$$\mathrm{Show}\:\mathrm{that}. \\ $$$$\sqrt{\mathrm{3}}\left(\mathrm{cosec20}\right)\:−\:\mathrm{sec20}\:=\:\mathrm{4} \\ $$
Answered by mrW1 last updated on 12/Jun/17
((√3)/(sin 20))−(1/(cos 20))=(((√3)cos 20−1sin 20)/(sin 20cos 20))  =((4(((√3)/2)cos 20−(1/2)sin 20))/(sin 40))  =((4(cos 30cos 20−sin 30sin 20))/(sin 40))  =((4cos 50)/(sin 40))  =((4sin 40)/(sin 40))  =4
$$\frac{\sqrt{\mathrm{3}}}{\mathrm{sin}\:\mathrm{20}}−\frac{\mathrm{1}}{\mathrm{cos}\:\mathrm{20}}=\frac{\sqrt{\mathrm{3}}\mathrm{cos}\:\mathrm{20}−\mathrm{1sin}\:\mathrm{20}}{\mathrm{sin}\:\mathrm{20cos}\:\mathrm{20}} \\ $$$$=\frac{\mathrm{4}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{cos}\:\mathrm{20}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{20}\right)}{\mathrm{sin}\:\mathrm{40}} \\ $$$$=\frac{\mathrm{4}\left(\mathrm{cos}\:\mathrm{30cos}\:\mathrm{20}−\mathrm{sin}\:\mathrm{30sin}\:\mathrm{20}\right)}{\mathrm{sin}\:\mathrm{40}} \\ $$$$=\frac{\mathrm{4cos}\:\mathrm{50}}{\mathrm{sin}\:\mathrm{40}} \\ $$$$=\frac{\mathrm{4sin}\:\mathrm{40}}{\mathrm{sin}\:\mathrm{40}} \\ $$$$=\mathrm{4} \\ $$
Commented by tawa tawa last updated on 12/Jun/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *