Question Number 56685 by pieroo last updated on 21/Mar/19
$$\mathrm{show}\:\mathrm{that}\:\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} \:=\:\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \\ $$
Commented by pieroo last updated on 21/Mar/19
$$\mathrm{please},\:\mathrm{I}\:\mathrm{need}\:\mathrm{some}\:\mathrm{help}. \\ $$
Answered by ajfour last updated on 22/Mar/19
$$\alpha^{\mathrm{4}} +\beta^{\:\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{2}} \beta^{\:\mathrm{2}} =\left(\alpha^{\mathrm{2}} +\beta^{\:\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\mathrm{since} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{2ab}=\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} \\ $$$$\mathrm{let}\:\mathrm{a}=\alpha^{\mathrm{2}} \:\mathrm{and}\:\mathrm{b}=\beta^{\:\mathrm{2}} \\ $$$$\Rightarrow\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\beta^{\:\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{2}\left(\alpha^{\mathrm{2}} \right)\left(\beta^{\:\mathrm{2}} \right)=\left(\alpha^{\mathrm{2}} +\beta^{\:\mathrm{2}} \right)^{\mathrm{2}} \:. \\ $$
Commented by pieroo last updated on 22/Mar/19
$$\mathrm{thanks},\:\mathrm{but}\:\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}\:\mathrm{that}? \\ $$$$\mathrm{I}\:\mathrm{know}\:\mathrm{of}\:\mathrm{the}\:\mathrm{identity}\:\mathrm{but}\:\mathrm{tried}\:\mathrm{severally} \\ $$$$\mathrm{to}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{but}\:\mathrm{to}\:\mathrm{no}\:\mathrm{avail}. \\ $$
Commented by MJS last updated on 23/Mar/19
$$\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{\mathrm{2}} =\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{2}\left(\alpha^{\mathrm{2}} \right)\left(\beta^{\mathrm{2}} \right)+\left(\beta^{\mathrm{2}} \right)^{\mathrm{2}} =\alpha^{\mathrm{4}} +\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} +\beta^{\mathrm{4}} \\ $$$$\mathrm{where}'\mathrm{s}\:\mathrm{the}\:\mathrm{problem}??? \\ $$
Commented by pieroo last updated on 28/Mar/19
$$\mathrm{alright}\:\mathrm{alright}.\:\mathrm{Thanks}\:\mathrm{sir}. \\ $$