Menu Close

show-that-8-n-3-n-is-divisible-by-5-for-all-natural-number-




Question Number 148732 by ethiork last updated on 30/Jul/21
      show that   8^n  −3^n  is divisible by 5  for all natural  number.
showthat8n3nisdivisibleby5forallnaturalnumber.
Answered by Rasheed.Sindhi last updated on 30/Jul/21
5 ∣ (8^n −3^n )  ⌣⌣⌣⌣⌣⌣⌣⌣⌣⌣⌣⌣  ∵8≡3(mod 5)  ∴8^n ≡3^n (mod 5)
5(8n3n)⌣⌣⌣⌣⌣⌣⌣⌣⌣⌣⌣⌣83(mod5)8n3n(mod5)
Answered by mr W last updated on 30/Jul/21
8^n =(5+3)^n =3^n +Σ_(k=1) ^n C_k ^n 3^(n−k) 5^k   8^n −3^n =Σ_(k=1) ^n C_k ^n 3^(n−k) 5^k ≡0 mod 5
8n=(5+3)n=3n+nk=1Ckn3nk5k8n3n=nk=1Ckn3nk5k0mod5
Answered by physicstutes last updated on 31/Jul/21
let f(n) = 8^n −3^n   f(1)= 8^1 −3^1 =5=5(1) ⇒ true for f(1)  assume f(k) is true ⇒ 8^k −3^k =5n, n∈N  now f(k+1)= 8^(k+1) −3^(k+1) =8(8^k )−3(3^k )  f(k+1)= 8(5n+3^k )−3(3^k )                = 5(8n)+5(3^k )               = 5(8n+3^k ) since k ∈N, 3^k ∈N  and so( 8n + 3^k ) ∈ N ⇒ f(k+1)=5p  p∈N ⇒ f(k+1) is true and so for all  natural numbers the expression f(n)  is divisible by 5.
letf(n)=8n3nf(1)=8131=5=5(1)trueforf(1)assumef(k)istrue8k3k=5n,nNnowf(k+1)=8k+13k+1=8(8k)3(3k)f(k+1)=8(5n+3k)3(3k)=5(8n)+5(3k)=5(8n+3k)sincekN,3kNandso(8n+3k)Nf(k+1)=5ppNf(k+1)istrueandsoforallnaturalnumberstheexpressionf(n)isdivisibleby5.

Leave a Reply

Your email address will not be published. Required fields are marked *