Menu Close

show-that-a-b-c-2-a-2-b-2-c-2-cot-1-2-A-cot-1-2-B-cot-1-2-C-cot-A-cot-B-cot-C-please-help-




Question Number 22536 by NECx last updated on 20/Oct/17
show that (((a+b+c)^2 )/(a^2 +b^2 +c^2 ))=  ((cot (1/2)A+cot (1/2)B+cot (1/2)C)/(cot A+cot B+cot C))      please help
showthat(a+b+c)2a2+b2+c2=cot12A+cot12B+cot12CcotA+cotB+cotCpleasehelp
Commented by ajfour last updated on 20/Oct/17
Another solution: see Q.22576
Anothersolution:seeQ.22576
Answered by $@ty@m last updated on 20/Oct/17
We have  cot (A/2)=(√((s(s−a))/((s−b)(s−c))))   −−(1)  Let ((sin A)/a)=((sin B)/b)=((sin C)/c)=k  ⇒cot A=((cos A)/(sin A))=(((b^2 +c^2 −a^2 )/(2bc))/(ak))=((b^2 +c^2 −a^2 )/(2abck))  −−(2)  Using (1) & (2)  R.H.S.=((cot (1/2)A+cot (1/2)B+cot (1/2)C)/(cot A+cot B+cot C))  =(((√((s(s−a))/((s−b)(s−c))))+(√((s(s−b))/((s−a)(s−c))))+(√((s(s−c))/((s−b)(s−a)))))/(((b^2 +c^2 −a^2 )/(2abck))+((a^2 +c^2 −b^2 )/(2abck))+((a^2 +b^2 −c^2 )/(2abck))))  =((2abck)/( (√((s−a)(s−b)(s−c))))).(((√(s(s−a)^2 ))+(√(s(s−b)^2 ))+(√(s(s−c)^2 )))/(b^2 +c^2 −a^2 +a^2 +c^2 −b^2 +a^2 +b^2 −c^2 ))  =((2abck)/( (√(s(s−a)(s−b)(s−c))))).((s{(s−a)+(s−b)+(s−c)})/(a^2 +b^2 +c^2 ))  =((2abck)/((1/2)bcsin A)).((s{3s−(a+b+c)})/(a^2 +b^2 +c^2 ))  =4.((s{3s−2s})/(a^2 +b^2 +c^2 ))  =4.(s^2 /(a^2 +b^2 +c^2 ))  =(((2s)^2 )/(a^2 +b^2 +c^2 ))  =(((a+b+c)^2 )/(a^2 +b^2 +c^2 ))=L.H.S.
WehavecotA2=s(sa)(sb)(sc)(1)LetsinAa=sinBb=sinCc=kcotA=cosAsinA=b2+c2a22bcak=b2+c2a22abck(2)Using(1)&(2)R.H.S.=cot12A+cot12B+cot12CcotA+cotB+cotC=s(sa)(sb)(sc)+s(sb)(sa)(sc)+s(sc)(sb)(sa)b2+c2a22abck+a2+c2b22abck+a2+b2c22abck=2abck(sa)(sb)(sc).s(sa)2+s(sb)2+s(sc)2b2+c2a2+a2+c2b2+a2+b2c2=2abcks(sa)(sb)(sc).s{(sa)+(sb)+(sc)}a2+b2+c2=2abck12bcsinA.s{3s(a+b+c)}a2+b2+c2=4.s{3s2s}a2+b2+c2=4.s2a2+b2+c2=(2s)2a2+b2+c2=(a+b+c)2a2+b2+c2=L.H.S.
Commented by NECx last updated on 20/Oct/17
wow..... i′m most grateful.
wow..immostgrateful.

Leave a Reply

Your email address will not be published. Required fields are marked *