Menu Close

Show-that-a-b-c-x-2-b-c-a-xy-c-a-b-y-2-will-be-a-perfect-square-if-a-b-c-are-in-H-P-




Question Number 20307 by Tinkutara last updated on 25/Aug/17
Show that a(b − c)x^2  + b(c − a)xy +  c(a − b)y^2  will be a perfect square if a,  b, c are in H.P.
Showthata(bc)x2+b(ca)xy+c(ab)y2willbeaperfectsquareifa,b,careinH.P.
Answered by ajfour last updated on 25/Aug/17
=x^2 [c(a−b)((y/x))^2 +b(c−a)((y/x))+a(b−c)]  =c(a−b)x^2 {((y/x))^2 +2[((b(c−a))/(2c(a−b)))]x+      [((b(c−a))/(2c(a−b)))]^2 }−((b^2 (c−a)^2 )/(4c(a−b)))+a(b−c)  =c(a−b)x^2 {(y/x)+((b(c−a))/(2c(a−b)))}^2 +            ((4ac(a−b)(b−c)−b^2 (c−a)^2 )/(4c(a−b)))  ⇒ expression is a perfect square  if the constant term is zero,  ⇒ 4ac(ab−ac−b^2 +bc)                   =b^2 c^2 −2b^2 ac+a^2 b^2   ⇒   4a^2 bc−4a^2 c^2 −4b^2 ac+4abc^2                    =b^2 c^2 −2b^2 ac+a^2 b^2   ⇒ 4abc(a+c)=4a^2 c^2 +b^2 (a^2 +c^2 +2ac)  ⇒ 4abc(a+c)=4a^2 c^2 +b^2 (a+c)^2   ⇒  [b(a+c)−2ac]^2 =0  ⇒    b=((2ac)/(a+c))   ⇒   a, b, c need be  in H.P. •
=x2[c(ab)(yx)2+b(ca)(yx)+a(bc)]=c(ab)x2{(yx)2+2[b(ca)2c(ab)]x+[b(ca)2c(ab)]2}b2(ca)24c(ab)+a(bc)=c(ab)x2{yx+b(ca)2c(ab)}2+4ac(ab)(bc)b2(ca)24c(ab)expressionisaperfectsquareiftheconstanttermiszero,4ac(abacb2+bc)=b2c22b2ac+a2b24a2bc4a2c24b2ac+4abc2=b2c22b2ac+a2b24abc(a+c)=4a2c2+b2(a2+c2+2ac)4abc(a+c)=4a2c2+b2(a+c)2[b(a+c)2ac]2=0b=2aca+ca,b,cneedbeinH.P.
Commented by Tinkutara last updated on 25/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Answered by $@ty@m last updated on 26/Aug/17
discriminant=0  ⇒{b(c−a)y}^2 −4ac(b−c)(a−b)y^2 =0  ⇒b^2 (c−a)^2 −4ac(b−c)(a−b)=0  ⇒b^2 (c−a)^2 =4ac(b−c)(a−b)  ⇒{a(b−c)+c(a−b)}^2 =4ac(b−c)(a−b)  ⇒{a(b−c)−c(a−b)}^2 =0  ⇒a(b−c)=c(a−b)  ⇒ab−ac=ca−cb  ⇒(1/c)−(1/b)=(1/b)−(1/a) (dividing by abc)  ⇒a, b, c are in H.P.
discriminant=0{b(ca)y}24ac(bc)(ab)y2=0b2(ca)24ac(bc)(ab)=0b2(ca)2=4ac(bc)(ab){a(bc)+c(ab)}2=4ac(bc)(ab){a(bc)c(ab)}2=0a(bc)=c(ab)abac=cacb1c1b=1b1a(dividingbyabc)a,b,careinH.P.
Commented by $@ty@m last updated on 25/Aug/17
A quadratic expression is a perfect   square⇒discriminant=0
Aquadraticexpressionisaperfectsquarediscriminant=0
Commented by ajfour last updated on 25/Aug/17
thanks.
thanks.
Commented by Tinkutara last updated on 25/Aug/17
Thank you very much Satyam!
ThankyouverymuchSatyam!
Commented by $@ty@m last updated on 26/Aug/17
∧ simpler method
simplermethod

Leave a Reply

Your email address will not be published. Required fields are marked *