Menu Close

Show-that-a-b-R-1-x-y-x-y-2-1-xy-1-1-x-1-1-y-1-




Question Number 164622 by mathocean1 last updated on 19/Jan/22
Show that ∀ a, b ∈ R,  1. ∣∣x∣−∣y∣∣≤∣x−y∣  2. 1+∣xy−1∣≤(1+∣x−1∣)(1+∣y−1∣).
$${Show}\:{that}\:\forall\:{a},\:{b}\:\in\:\mathbb{R}, \\ $$$$\mathrm{1}.\:\mid\mid{x}\mid−\mid{y}\mid\mid\leqslant\mid{x}−{y}\mid \\ $$$$\mathrm{2}.\:\mathrm{1}+\mid{xy}−\mathrm{1}\mid\leqslant\left(\mathrm{1}+\mid{x}−\mathrm{1}\mid\right)\left(\mathrm{1}+\mid{y}−\mathrm{1}\mid\right). \\ $$
Answered by hmrsh last updated on 19/Jan/22
  Answer of part(1):  ∗ ∣x∣ ≤ A ↔ −A ≤ x ≤ A  ∗∗ ∣x + y∣ ≤ ∣x∣ + ∣y∣      (triangle inequality)    ∣x∣ = ∣(x − y) + y∣  →^(∗∗)  ∣x∣ = ∣(x − y) + y∣ ≤ ∣x − y∣ + ∣y∣   (#)  also:  ∣y∣ = ∣(y−x)+x∣ ≤ ∣y−x∣+∣x∣=∣x−y∣+∣x∣  → ∣y∣ −∣x − y∣ ≤ ∣x∣    →^((#))  ∣y∣ −∣x − y∣ ≤ ∣x∣ ≤ ∣x − y∣ + ∣y∣  → −∣x − y∣ ≤ ∣x∣ − ∣y∣ ≤ ∣x − y∣  →^∗  ∣∣x∣ − ∣y∣∣ ≤ ∣x − y∣
$$ \\ $$$$\mathrm{Answer}\:\mathrm{of}\:\mathrm{part}\left(\mathrm{1}\right): \\ $$$$\ast\:\mid{x}\mid\:\leqslant\:{A}\:\leftrightarrow\:−{A}\:\leqslant\:{x}\:\leqslant\:{A} \\ $$$$\ast\ast\:\mid{x}\:+\:{y}\mid\:\leqslant\:\mid{x}\mid\:+\:\mid{y}\mid\:\:\:\:\:\:\left(\mathrm{triangle}\:\mathrm{inequality}\right) \\ $$$$ \\ $$$$\mid{x}\mid\:=\:\mid\left({x}\:−\:{y}\right)\:+\:{y}\mid \\ $$$$\overset{\ast\ast} {\rightarrow}\:\mid{x}\mid\:=\:\mid\left({x}\:−\:{y}\right)\:+\:{y}\mid\:\leqslant\:\mid{x}\:−\:{y}\mid\:+\:\mid{y}\mid\:\:\:\left(#\right) \\ $$$$\mathrm{also}: \\ $$$$\mid{y}\mid\:=\:\mid\left({y}−{x}\right)+{x}\mid\:\leqslant\:\mid{y}−{x}\mid+\mid{x}\mid=\mid{x}−{y}\mid+\mid{x}\mid \\ $$$$\rightarrow\:\mid{y}\mid\:−\mid{x}\:−\:{y}\mid\:\leqslant\:\mid{x}\mid \\ $$$$ \\ $$$$\overset{\left(#\right)} {\rightarrow}\:\mid{y}\mid\:−\mid{x}\:−\:{y}\mid\:\leqslant\:\mid{x}\mid\:\leqslant\:\mid{x}\:−\:{y}\mid\:+\:\mid{y}\mid \\ $$$$\rightarrow\:−\mid{x}\:−\:{y}\mid\:\leqslant\:\mid{x}\mid\:−\:\mid{y}\mid\:\leqslant\:\mid{x}\:−\:{y}\mid \\ $$$$\overset{\ast} {\rightarrow}\:\mid\mid{x}\mid\:−\:\mid{y}\mid\mid\:\leqslant\:\mid{x}\:−\:{y}\mid \\ $$
Commented by mathocean1 last updated on 19/Jan/22
thanks.
$${thanks}. \\ $$
Answered by hmrsh last updated on 20/Jan/22
Answer of part 2:  tip 1:  xy−1 = (1−x)(1−y)+(x−1)+(y−1)  tip 2:  (1+x_1 )(1+x_2 ) = 1+ x_1 +x_2 +x_1 x_2     using triangle inequality and tip 1:  ∣xy−1∣ = ∣(1−x)(1−y)+(x−1)+(y−1)∣  ≤ ∣(1−x)(1−y)∣+∣(x−1)+(y−1)∣  ≤ ∣(1−x)(1−y)∣+∣x−1∣+∣y−1∣  = ∣1−x∣∣1−y∣+∣x−1∣+∣y−1∣  = ∣x−1∣∣y−1∣+∣x−1∣+∣y−1∣    → ∣xy−1∣≤∣x−1∣∣y−1∣+∣x−1∣+∣y−1∣  →^(+1)  ∣xy−1∣+1 ≤∣x−1∣∣y−1∣+∣x−1∣+∣y−1∣+1  using tip 2 to RHS:  ∣xy−1∣+1≤(1+∣x−1∣)(1+∣y−1∣)
$$\mathrm{Answer}\:\mathrm{of}\:\mathrm{part}\:\mathrm{2}: \\ $$$$\mathrm{tip}\:\mathrm{1}: \\ $$$${xy}−\mathrm{1}\:=\:\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−{y}\right)+\left({x}−\mathrm{1}\right)+\left({y}−\mathrm{1}\right) \\ $$$$\mathrm{tip}\:\mathrm{2}: \\ $$$$\left(\mathrm{1}+{x}_{\mathrm{1}} \right)\left(\mathrm{1}+{x}_{\mathrm{2}} \right)\:=\:\mathrm{1}+\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{1}} {x}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{using}\:\mathrm{triangle}\:\mathrm{inequality}\:\mathrm{and}\:\mathrm{tip}\:\mathrm{1}: \\ $$$$\mid{xy}−\mathrm{1}\mid\:=\:\mid\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−{y}\right)+\left({x}−\mathrm{1}\right)+\left({y}−\mathrm{1}\right)\mid \\ $$$$\leqslant\:\mid\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−{y}\right)\mid+\mid\left({x}−\mathrm{1}\right)+\left({y}−\mathrm{1}\right)\mid \\ $$$$\leqslant\:\mid\left(\mathrm{1}−{x}\right)\left(\mathrm{1}−{y}\right)\mid+\mid{x}−\mathrm{1}\mid+\mid{y}−\mathrm{1}\mid \\ $$$$=\:\mid\mathrm{1}−{x}\mid\mid\mathrm{1}−{y}\mid+\mid{x}−\mathrm{1}\mid+\mid{y}−\mathrm{1}\mid \\ $$$$=\:\mid{x}−\mathrm{1}\mid\mid{y}−\mathrm{1}\mid+\mid{x}−\mathrm{1}\mid+\mid{y}−\mathrm{1}\mid \\ $$$$ \\ $$$$\rightarrow\:\mid{xy}−\mathrm{1}\mid\leqslant\mid{x}−\mathrm{1}\mid\mid{y}−\mathrm{1}\mid+\mid{x}−\mathrm{1}\mid+\mid{y}−\mathrm{1}\mid \\ $$$$\overset{+\mathrm{1}} {\rightarrow}\:\mid{xy}−\mathrm{1}\mid+\mathrm{1}\:\leqslant\mid{x}−\mathrm{1}\mid\mid{y}−\mathrm{1}\mid+\mid{x}−\mathrm{1}\mid+\mid{y}−\mathrm{1}\mid+\mathrm{1} \\ $$$$\mathrm{using}\:\mathrm{tip}\:\mathrm{2}\:\mathrm{to}\:\mathrm{RHS}: \\ $$$$\mid{xy}−\mathrm{1}\mid+\mathrm{1}\leqslant\left(\mathrm{1}+\mid{x}−\mathrm{1}\mid\right)\left(\mathrm{1}+\mid{y}−\mathrm{1}\mid\right) \\ $$$$ \\ $$
Commented by mathocean1 last updated on 22/Jan/22
thanks sir.
$${thanks}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *